Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33041753
PubMed Central
PMC7522367
DOI
10.3389/fnins.2020.00924
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, cross-comparison study, human, mesial temporal lobe epilepsy, miRNA, sequencing,
- Publikační typ
- časopisecké články MeSH
Temporal lobe epilepsy (TLE) is a severe neurological disorder accompanied by recurrent spontaneous seizures. Although the knowledge of TLE onset is still incomplete, TLE pathogenesis most likely involves the aberrant expression of microRNAs (miRNAs). miRNAs play an essential role in organism homeostasis and are widely studied in TLE as potential therapeutics and biomarkers. However, many discrepancies in discovered miRNAs occur among TLE studies due to model-specific miRNA expression, different onset ages of epilepsy among patients, or technology-related bias. We employed a massive parallel sequencing approach to analyze brain tissues from 16 adult mesial TLE (mTLE)/hippocampal sclerosis (HS) patients, 8 controls and 20 rats with TLE-like syndrome, and 20 controls using the same workflow and categorized these subjects based on the age of epilepsy onset. All categories were compared to discover overlapping miRNAs with an aberrant expression, which could be involved in TLE. Our cross-comparative analyses showed distinct miRNA profiles across the age of epilepsy onset and found that the miRNA profile in rats with adult-onset TLE shows the closest resemblance to the profile in mTLE/HS patients. Additionally, this analysis revealed overlapping miRNAs between patients and the rat model, which should participate in epileptogenesis and ictogenesis. Among the overlapping miRNAs stand out miR-142-5p and miR-142-3p, which regulate immunomodulatory agents with pro-convulsive effects and suppress neuronal growth. Our cross-comparison study enhanced the insight into the effect of the age of epilepsy onset on miRNA expression and deepened the knowledge of epileptogenesis. We employed the same methodological workflow in both patients and the rat model, thus improving the reliability and accuracy of our results.
Zobrazit více v PubMed
Andrews S. (1973). Babraham bioinformatics - FastQC a quality control tool for high throughput sequence data. Soil 5 47–81. 10.1016/0038-0717(73)90093-X DOI
Artigas F., Celada P., Bortolozzi A. (2018). Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. Eur. Neuropsychopharmacol. 28 457–482. 10.1016/j.euroneuro.2018.01.005 PubMed DOI
Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136 215–233. 10.1016/j.cell.2009.01.002 PubMed DOI PMC
Bencurova P., Baloun J., Musilova K., Radova L., Tichy B., Pail M., et al. (2017). MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: whole miRNome profiling of human hippocampus. Epilepsia 58 1782–1793. 10.1111/epi.13870 PubMed DOI
Benes V., Collier P., Kordes C., Stolte J., Rausch T., Muckentaler M. U., et al. (2015). Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci. Rep. 5:11590. 10.1038/srep11590 PubMed DOI PMC
Blümcke I., Thom M., Aronica E., Armstrong D. D., Bartolomei F., Bernasconi A., et al. (2013). International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54 1315–1329. 10.1111/epi.12220 PubMed DOI
Brennan G. P., Henshall D. C. (2018). microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 667 47–52. 10.1016/j.neulet.2017.01.017 PubMed DOI
Britton J. (2016). Autoimmune epilepsy. Handb. Clin. Neurol. 133 219–245. 10.1016/B978-0-444-63432-0.00013-X PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
R Core Team (2020). R: A Language and Environment for Statistical Computing. Available online at: http://www.r-project.org/ (accessed June 30, 2020).
Commission on Classification and Terminology of the ILAE (1989). Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30, 389–399. 10.1111/j.1528-1157.1989.tb05316.x PubMed DOI
Crespo M. C., Tomé-Carneiro J., Gómez-Coronado D., Burgos-Ramos E., Garciá-Serrano A., Martín-Hernández R., et al. (2018). Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil. Sci. Rep. 8:3993. 10.1038/s41598-018-22148-5 PubMed DOI PMC
Davis M. P. A., van Dongen S., Abreu-Goodger C., Bartonicek N., Enright A. J. (2013). Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63 41–49. 10.1016/j.ymeth.2013.06.027 PubMed DOI PMC
Dluzen D. F., Noren Hooten N., Zhang Y., Kim Y., Glover F. E., Tajuddin S. M., et al. (2016). Racial differences in microRNA and gene expression in hypertensive women. Sci. Rep. 6:35815. 10.1038/srep35815 PubMed DOI PMC
Gorter J. A., Iyer A., White I., Colzi A., van Vliet E. A., Sisodiya S., et al. (2014). Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis. 62 508–520. 10.1016/j.nbd.2013.10.026 PubMed DOI
Gulyaeva L. F., Kushlinskiy N. E. (2016). Regulatory mechanisms of microRNA expression. J. Transl. Med. 14:143. 10.1186/s12967-016-0893-x PubMed DOI PMC
Henshall D. C. (2014). MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr. Opin. Neurol. 27 199–205. 10.1097/WCO.0000000000000079 PubMed DOI PMC
Huan T., Chen G., Liu C., Bhattacharya A., Rong J., Chen B. H., et al. (2018). Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell 17:e12687. 10.1111/acel.12687 PubMed DOI PMC
Huang S., Lv Z., Wen Y., Wei Y., Zhou L., Ke Y., et al. (2019). miR-129-2-3p directly targets SYK gene and associates with the risk of ischaemic stroke in a Chinese population. J. Cell. Mol. Med. 23 167–176. 10.1111/jcmm.13901 PubMed DOI PMC
Kaalund S. S., Venø M. T., Bak M., Møller R. S., Laursen H., Madsen F., et al. (2014). Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance. Epilepsia 55 2017–2027. 10.1111/epi.12839 PubMed DOI
Kakimoto Y., Kamiguchi H., Ochiai E., Satoh F., Osawa M. (2015). MicroRNA stability in postmortem FFPE tissues: quantitative analysis using autoptic samples from acute myocardial infarction patients. PLoS One 10::e0129338. 10.1371/journal.pone.0129338 PubMed DOI PMC
Kan A. A., van Erp S., Derijck A. A. H. A., de Wit M., Hessel E. V. S., O’Duibhir E., et al. (2012). Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell. Mol. Life Sci. 69 3127–3145. 10.1007/s00018-012-0992-997 PubMed DOI PMC
Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., Altman D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8:e1000412. 10.1371/journal.pbio.1000412 PubMed DOI PMC
Korotkov A., Mills J. D., Gorter J. A., Van Vliet E. A., Aronica E. (2017). Systematic review and meta- analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci. Rep. 7:11592. 10.1038/s41598-017-11510-8 PubMed DOI PMC
Kozomara A., Griffiths-Jones S. (2014). MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42 D68–D73. 10.1093/nar/gkt1181 PubMed DOI PMC
Kretschmann A., Danis B., Andonovic L., Abnaof K., van Rikxoort M., Siegel F., et al. (2014). Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J. Mol. Neurosci. 55 466–479. 10.1007/s12031-014-0368-6 PubMed DOI PMC
Kubová H., Mareš P. (2013). Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience 235 232–249. 10.1016/j.neuroscience.2012.12.055 PubMed DOI
Kubová H., Mares P., Suchomelová L., Brozek G., Druga R., Pitkänen A. (2004). Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 19 3255–3265. 10.1111/j.0953-816X.2004.03410.x PubMed DOI
Leung A. K. L., Sharp P. A. (2010). MicroRNA functions in stress responses. Mol. Cell 40 205–215. 10.1016/j.molcel.2010.09.027 PubMed DOI PMC
Li Y., Kowdley K. V. (2012). MicroRNAs in common human diseases. Genomics Proteomics Bioinforma. 10 246–253. 10.1016/j.gpb.2012.07.005 PubMed DOI PMC
Liu D. Z., Tian Y., Ander B. P., Xu H., Stamova B. S., Zhan X., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J. Cereb. Blood Flow Metab. 30 92–101. 10.1038/jcbfm.2009.186 PubMed DOI PMC
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mandolesi G., De Vito F., Musella A., Gentile A., Bullitta S., Fresegna D., et al. (2017). MiR-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. J. Neurosci. 37 546–561. 10.1523/JNEUROSCI.0851-16.2016 PubMed DOI PMC
Mannironi C., Biundo A., Rajendran S., De Vito F., Saba L., Caioli S., et al. (2018). miR-135a Regulates synaptic transmission and anxiety-like behavior in amygdala. Mol. Neurobiol. 55 3301–3315. 10.1007/s12035-017-0564-9 PubMed DOI
Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17 10–12. 10.14806/ej.17.1.200 DOI
McKiernan R. C., Jimenez-Mateos E. M., Bray I., Engel T., Brennan G. P., Sano T., et al. (2012a). Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One 7:e35921. 10.1371/journal.pone.0035921 PubMed DOI PMC
McKiernan R. C., Jimenez-Mateos E. M., Sano T., Bray I., Stallings R. L., Simon R. P., et al. (2012b). Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp. Neurol. 237 346–354. 10.1016/j.expneurol.2012.06.029 PubMed DOI PMC
Mikulecká A., Druga R., Stuchlík A., Mareš P., Kubová H. (2019). Comorbidities of early-onset temporal epilepsy: cognitive, social, emotional, and morphologic dimensions. Exp. Neurol. 320 113005. 10.1016/j.expneurol.2019.113005 PubMed DOI
Nairismägi J., Pitkänen A., Kettunen M. I., Kauppinen R. A., Kubova H. (2006). Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. Epilepsia 47 479–488. 10.1111/j.1528-1167.2006.00455.x PubMed DOI
Rao Y. S., Pak T. R. (2016). microRNAs and the adolescent brain: filling the knowledge gap. Neurosci. Biobehav. Rev. 70 313–322. 10.1016/j.neubiorev.2016.06.008 PubMed DOI PMC
Risbud R. M., Porter B. E. (2013). Changes in MicroRNA Expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One 8:e53464. 10.1371/journal.pone.0053464 PubMed DOI PMC
Roncon P., Soukupovà M., Binaschi A., Falcicchia C., Zucchini S., Ferracin M., et al. (2015). MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. Sci. Rep. 5:14143. 10.1038/srep14143 PubMed DOI PMC
Rutten A., Van Albada M., Silveira D. C., Cha B. H., Liu X., Hu Y. N., et al. (2002). Memory impairment following status epilepticus in immature rats: time-course and environmental effects. Eur. J. Neurosci., 16 501–513. 10.1046/j.1460-9568.2002.02103.x PubMed DOI
Srinivasan S., Selvan S. T., Archunan G., Gulyas B., Padmanabhan P. (2013). MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics 3 930–942. 10.7150/thno.7026 PubMed DOI PMC
Thom M., Eriksson S., Martinian L., Caboclo L. O., McEvoy A. W., Duncan J. S., et al. (2009). Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features. J. Neuropathol. Exp. Neurol. 68 928–938. 10.1097/NEN.0b013e3181b05d67 PubMed DOI PMC
Tobón K. E., Chang D., Kuzhikandathil E. V. (2012). MicroRNA 142-3p mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One 7:e49288. 10.1371/journal.pone.0049288 PubMed DOI PMC
Turski L., Cavalheiro E. A., Sieklucka-Dziuba M., Ikonomidou-Turski C., Czuczwar S. J., Turski W. A. (1986). Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain. Brain Res. 398 37–48. 10.1016/0006-8993(86)91247-3 PubMed DOI
Umehara T., Mori R., Mace K. A., Murase T., Abe Y., Yamamoto T., et al. (2019). Identification of specific miRNAs in neutrophils of type 2 diabetic mice: overexpression of miRNA-129-2-3p accelerates diabetic wound healing. Diabetes 68 617–630. 10.2337/db18-0313 PubMed DOI
van Battum E. Y., Verhagen M. G., Vangoor V. R., Fujita Y., Derijck A. A. H. A., O’Duibhir E., et al. (2018). An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting krüppel-like factor 4. J. Neurosci. 38 613–630. 10.1523/JNEUROSCI.0662-17.2017 PubMed DOI PMC
Vangoor V. R., Reschke C. R., Senthilkumar K., Van De Haar L. L., de Wit M., Giuliani G., et al. (2019). Antagonizing increased miR-135a levels at the chronic stage of experimental TLE reduces spontaneous recurrent seizures. J. Neurosci. 39 5064–5079. 10.1523/JNEUROSCI.3014-18.2019 PubMed DOI PMC
Vitsios D. M., Enright A. J. (2015). Chimira: analysis of small RNA sequencing data and microRNA modifications: fig. 1. Bioinformatics 31 3365–3367. 10.1093/bioinformatics/btv380 PubMed DOI PMC
Vlachos I. S., Zagganas K., Paraskevopoulou M. D., Georgakilas G., Karagkouni D., Vergoulis T., et al. (2015). DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 43 W460–W466. 10.1093/nar/gkv403 PubMed DOI PMC
Wong N., Wang X. (2015). miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146–D152. 10.1093/nar/gku1104 PubMed DOI PMC