Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats

. 2020 ; 14 () : 924. [epub] 20200915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33041753

Temporal lobe epilepsy (TLE) is a severe neurological disorder accompanied by recurrent spontaneous seizures. Although the knowledge of TLE onset is still incomplete, TLE pathogenesis most likely involves the aberrant expression of microRNAs (miRNAs). miRNAs play an essential role in organism homeostasis and are widely studied in TLE as potential therapeutics and biomarkers. However, many discrepancies in discovered miRNAs occur among TLE studies due to model-specific miRNA expression, different onset ages of epilepsy among patients, or technology-related bias. We employed a massive parallel sequencing approach to analyze brain tissues from 16 adult mesial TLE (mTLE)/hippocampal sclerosis (HS) patients, 8 controls and 20 rats with TLE-like syndrome, and 20 controls using the same workflow and categorized these subjects based on the age of epilepsy onset. All categories were compared to discover overlapping miRNAs with an aberrant expression, which could be involved in TLE. Our cross-comparative analyses showed distinct miRNA profiles across the age of epilepsy onset and found that the miRNA profile in rats with adult-onset TLE shows the closest resemblance to the profile in mTLE/HS patients. Additionally, this analysis revealed overlapping miRNAs between patients and the rat model, which should participate in epileptogenesis and ictogenesis. Among the overlapping miRNAs stand out miR-142-5p and miR-142-3p, which regulate immunomodulatory agents with pro-convulsive effects and suppress neuronal growth. Our cross-comparison study enhanced the insight into the effect of the age of epilepsy onset on miRNA expression and deepened the knowledge of epileptogenesis. We employed the same methodological workflow in both patients and the rat model, thus improving the reliability and accuracy of our results.

Zobrazit více v PubMed

Andrews S. (1973). Babraham bioinformatics - FastQC a quality control tool for high throughput sequence data. Soil 5 47–81. 10.1016/0038-0717(73)90093-X DOI

Artigas F., Celada P., Bortolozzi A. (2018). Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. Eur. Neuropsychopharmacol. 28 457–482. 10.1016/j.euroneuro.2018.01.005 PubMed DOI

Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136 215–233. 10.1016/j.cell.2009.01.002 PubMed DOI PMC

Bencurova P., Baloun J., Musilova K., Radova L., Tichy B., Pail M., et al. (2017). MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: whole miRNome profiling of human hippocampus. Epilepsia 58 1782–1793. 10.1111/epi.13870 PubMed DOI

Benes V., Collier P., Kordes C., Stolte J., Rausch T., Muckentaler M. U., et al. (2015). Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci. Rep. 5:11590. 10.1038/srep11590 PubMed DOI PMC

Blümcke I., Thom M., Aronica E., Armstrong D. D., Bartolomei F., Bernasconi A., et al. (2013). International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54 1315–1329. 10.1111/epi.12220 PubMed DOI

Brennan G. P., Henshall D. C. (2018). microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 667 47–52. 10.1016/j.neulet.2017.01.017 PubMed DOI

Britton J. (2016). Autoimmune epilepsy. Handb. Clin. Neurol. 133 219–245. 10.1016/B978-0-444-63432-0.00013-X PubMed DOI

Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 611–622. 10.1373/clinchem.2008.112797 PubMed DOI

R Core Team (2020). R: A Language and Environment for Statistical Computing. Available online at: http://www.r-project.org/ (accessed June 30, 2020).

Commission on Classification and Terminology of the ILAE (1989). Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30, 389–399. 10.1111/j.1528-1157.1989.tb05316.x PubMed DOI

Crespo M. C., Tomé-Carneiro J., Gómez-Coronado D., Burgos-Ramos E., Garciá-Serrano A., Martín-Hernández R., et al. (2018). Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil. Sci. Rep. 8:3993. 10.1038/s41598-018-22148-5 PubMed DOI PMC

Davis M. P. A., van Dongen S., Abreu-Goodger C., Bartonicek N., Enright A. J. (2013). Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63 41–49. 10.1016/j.ymeth.2013.06.027 PubMed DOI PMC

Dluzen D. F., Noren Hooten N., Zhang Y., Kim Y., Glover F. E., Tajuddin S. M., et al. (2016). Racial differences in microRNA and gene expression in hypertensive women. Sci. Rep. 6:35815. 10.1038/srep35815 PubMed DOI PMC

Gorter J. A., Iyer A., White I., Colzi A., van Vliet E. A., Sisodiya S., et al. (2014). Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis. 62 508–520. 10.1016/j.nbd.2013.10.026 PubMed DOI

Gulyaeva L. F., Kushlinskiy N. E. (2016). Regulatory mechanisms of microRNA expression. J. Transl. Med. 14:143. 10.1186/s12967-016-0893-x PubMed DOI PMC

Henshall D. C. (2014). MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr. Opin. Neurol. 27 199–205. 10.1097/WCO.0000000000000079 PubMed DOI PMC

Huan T., Chen G., Liu C., Bhattacharya A., Rong J., Chen B. H., et al. (2018). Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell 17:e12687. 10.1111/acel.12687 PubMed DOI PMC

Huang S., Lv Z., Wen Y., Wei Y., Zhou L., Ke Y., et al. (2019). miR-129-2-3p directly targets SYK gene and associates with the risk of ischaemic stroke in a Chinese population. J. Cell. Mol. Med. 23 167–176. 10.1111/jcmm.13901 PubMed DOI PMC

Kaalund S. S., Venø M. T., Bak M., Møller R. S., Laursen H., Madsen F., et al. (2014). Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance. Epilepsia 55 2017–2027. 10.1111/epi.12839 PubMed DOI

Kakimoto Y., Kamiguchi H., Ochiai E., Satoh F., Osawa M. (2015). MicroRNA stability in postmortem FFPE tissues: quantitative analysis using autoptic samples from acute myocardial infarction patients. PLoS One 10::e0129338. 10.1371/journal.pone.0129338 PubMed DOI PMC

Kan A. A., van Erp S., Derijck A. A. H. A., de Wit M., Hessel E. V. S., O’Duibhir E., et al. (2012). Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell. Mol. Life Sci. 69 3127–3145. 10.1007/s00018-012-0992-997 PubMed DOI PMC

Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., Altman D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8:e1000412. 10.1371/journal.pbio.1000412 PubMed DOI PMC

Korotkov A., Mills J. D., Gorter J. A., Van Vliet E. A., Aronica E. (2017). Systematic review and meta- analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci. Rep. 7:11592. 10.1038/s41598-017-11510-8 PubMed DOI PMC

Kozomara A., Griffiths-Jones S. (2014). MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42 D68–D73. 10.1093/nar/gkt1181 PubMed DOI PMC

Kretschmann A., Danis B., Andonovic L., Abnaof K., van Rikxoort M., Siegel F., et al. (2014). Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J. Mol. Neurosci. 55 466–479. 10.1007/s12031-014-0368-6 PubMed DOI PMC

Kubová H., Mareš P. (2013). Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience 235 232–249. 10.1016/j.neuroscience.2012.12.055 PubMed DOI

Kubová H., Mares P., Suchomelová L., Brozek G., Druga R., Pitkänen A. (2004). Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 19 3255–3265. 10.1111/j.0953-816X.2004.03410.x PubMed DOI

Leung A. K. L., Sharp P. A. (2010). MicroRNA functions in stress responses. Mol. Cell 40 205–215. 10.1016/j.molcel.2010.09.027 PubMed DOI PMC

Li Y., Kowdley K. V. (2012). MicroRNAs in common human diseases. Genomics Proteomics Bioinforma. 10 246–253. 10.1016/j.gpb.2012.07.005 PubMed DOI PMC

Liu D. Z., Tian Y., Ander B. P., Xu H., Stamova B. S., Zhan X., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J. Cereb. Blood Flow Metab. 30 92–101. 10.1038/jcbfm.2009.186 PubMed DOI PMC

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Mandolesi G., De Vito F., Musella A., Gentile A., Bullitta S., Fresegna D., et al. (2017). MiR-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. J. Neurosci. 37 546–561. 10.1523/JNEUROSCI.0851-16.2016 PubMed DOI PMC

Mannironi C., Biundo A., Rajendran S., De Vito F., Saba L., Caioli S., et al. (2018). miR-135a Regulates synaptic transmission and anxiety-like behavior in amygdala. Mol. Neurobiol. 55 3301–3315. 10.1007/s12035-017-0564-9 PubMed DOI

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17 10–12. 10.14806/ej.17.1.200 DOI

McKiernan R. C., Jimenez-Mateos E. M., Bray I., Engel T., Brennan G. P., Sano T., et al. (2012a). Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One 7:e35921. 10.1371/journal.pone.0035921 PubMed DOI PMC

McKiernan R. C., Jimenez-Mateos E. M., Sano T., Bray I., Stallings R. L., Simon R. P., et al. (2012b). Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp. Neurol. 237 346–354. 10.1016/j.expneurol.2012.06.029 PubMed DOI PMC

Mikulecká A., Druga R., Stuchlík A., Mareš P., Kubová H. (2019). Comorbidities of early-onset temporal epilepsy: cognitive, social, emotional, and morphologic dimensions. Exp. Neurol. 320 113005. 10.1016/j.expneurol.2019.113005 PubMed DOI

Nairismägi J., Pitkänen A., Kettunen M. I., Kauppinen R. A., Kubova H. (2006). Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. Epilepsia 47 479–488. 10.1111/j.1528-1167.2006.00455.x PubMed DOI

Rao Y. S., Pak T. R. (2016). microRNAs and the adolescent brain: filling the knowledge gap. Neurosci. Biobehav. Rev. 70 313–322. 10.1016/j.neubiorev.2016.06.008 PubMed DOI PMC

Risbud R. M., Porter B. E. (2013). Changes in MicroRNA Expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One 8:e53464. 10.1371/journal.pone.0053464 PubMed DOI PMC

Roncon P., Soukupovà M., Binaschi A., Falcicchia C., Zucchini S., Ferracin M., et al. (2015). MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. Sci. Rep. 5:14143. 10.1038/srep14143 PubMed DOI PMC

Rutten A., Van Albada M., Silveira D. C., Cha B. H., Liu X., Hu Y. N., et al. (2002). Memory impairment following status epilepticus in immature rats: time-course and environmental effects. Eur. J. Neurosci., 16 501–513. 10.1046/j.1460-9568.2002.02103.x PubMed DOI

Srinivasan S., Selvan S. T., Archunan G., Gulyas B., Padmanabhan P. (2013). MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics 3 930–942. 10.7150/thno.7026 PubMed DOI PMC

Thom M., Eriksson S., Martinian L., Caboclo L. O., McEvoy A. W., Duncan J. S., et al. (2009). Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features. J. Neuropathol. Exp. Neurol. 68 928–938. 10.1097/NEN.0b013e3181b05d67 PubMed DOI PMC

Tobón K. E., Chang D., Kuzhikandathil E. V. (2012). MicroRNA 142-3p mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One 7:e49288. 10.1371/journal.pone.0049288 PubMed DOI PMC

Turski L., Cavalheiro E. A., Sieklucka-Dziuba M., Ikonomidou-Turski C., Czuczwar S. J., Turski W. A. (1986). Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain. Brain Res. 398 37–48. 10.1016/0006-8993(86)91247-3 PubMed DOI

Umehara T., Mori R., Mace K. A., Murase T., Abe Y., Yamamoto T., et al. (2019). Identification of specific miRNAs in neutrophils of type 2 diabetic mice: overexpression of miRNA-129-2-3p accelerates diabetic wound healing. Diabetes 68 617–630. 10.2337/db18-0313 PubMed DOI

van Battum E. Y., Verhagen M. G., Vangoor V. R., Fujita Y., Derijck A. A. H. A., O’Duibhir E., et al. (2018). An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting krüppel-like factor 4. J. Neurosci. 38 613–630. 10.1523/JNEUROSCI.0662-17.2017 PubMed DOI PMC

Vangoor V. R., Reschke C. R., Senthilkumar K., Van De Haar L. L., de Wit M., Giuliani G., et al. (2019). Antagonizing increased miR-135a levels at the chronic stage of experimental TLE reduces spontaneous recurrent seizures. J. Neurosci. 39 5064–5079. 10.1523/JNEUROSCI.3014-18.2019 PubMed DOI PMC

Vitsios D. M., Enright A. J. (2015). Chimira: analysis of small RNA sequencing data and microRNA modifications: fig. 1. Bioinformatics 31 3365–3367. 10.1093/bioinformatics/btv380 PubMed DOI PMC

Vlachos I. S., Zagganas K., Paraskevopoulou M. D., Georgakilas G., Karagkouni D., Vergoulis T., et al. (2015). DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 43 W460–W466. 10.1093/nar/gkv403 PubMed DOI PMC

Wong N., Wang X. (2015). miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146–D152. 10.1093/nar/gku1104 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dynamic miRNA changes during the process of epileptogenesis in an infantile and adult-onset model

. 2021 May 06 ; 11 (1) : 9649. [epub] 20210506

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...