Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33041753
PubMed Central
PMC7522367
DOI
10.3389/fnins.2020.00924
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, cross-comparison study, human, mesial temporal lobe epilepsy, miRNA, sequencing,
- Publikační typ
- časopisecké články MeSH
Temporal lobe epilepsy (TLE) is a severe neurological disorder accompanied by recurrent spontaneous seizures. Although the knowledge of TLE onset is still incomplete, TLE pathogenesis most likely involves the aberrant expression of microRNAs (miRNAs). miRNAs play an essential role in organism homeostasis and are widely studied in TLE as potential therapeutics and biomarkers. However, many discrepancies in discovered miRNAs occur among TLE studies due to model-specific miRNA expression, different onset ages of epilepsy among patients, or technology-related bias. We employed a massive parallel sequencing approach to analyze brain tissues from 16 adult mesial TLE (mTLE)/hippocampal sclerosis (HS) patients, 8 controls and 20 rats with TLE-like syndrome, and 20 controls using the same workflow and categorized these subjects based on the age of epilepsy onset. All categories were compared to discover overlapping miRNAs with an aberrant expression, which could be involved in TLE. Our cross-comparative analyses showed distinct miRNA profiles across the age of epilepsy onset and found that the miRNA profile in rats with adult-onset TLE shows the closest resemblance to the profile in mTLE/HS patients. Additionally, this analysis revealed overlapping miRNAs between patients and the rat model, which should participate in epileptogenesis and ictogenesis. Among the overlapping miRNAs stand out miR-142-5p and miR-142-3p, which regulate immunomodulatory agents with pro-convulsive effects and suppress neuronal growth. Our cross-comparison study enhanced the insight into the effect of the age of epilepsy onset on miRNA expression and deepened the knowledge of epileptogenesis. We employed the same methodological workflow in both patients and the rat model, thus improving the reliability and accuracy of our results.
Zobrazit více v PubMed
Andrews S. (1973). Babraham bioinformatics - FastQC a quality control tool for high throughput sequence data. DOI
Artigas F., Celada P., Bortolozzi A. (2018). Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. PubMed DOI
Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. PubMed DOI PMC
Bencurova P., Baloun J., Musilova K., Radova L., Tichy B., Pail M., et al. (2017). MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: whole miRNome profiling of human hippocampus. PubMed DOI
Benes V., Collier P., Kordes C., Stolte J., Rausch T., Muckentaler M. U., et al. (2015). Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. PubMed DOI PMC
Blümcke I., Thom M., Aronica E., Armstrong D. D., Bartolomei F., Bernasconi A., et al. (2013). International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. PubMed DOI
Brennan G. P., Henshall D. C. (2018). microRNAs in the pathophysiology of epilepsy. PubMed DOI
Britton J. (2016). Autoimmune epilepsy. PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. PubMed DOI
R Core Team (2020).
Commission on Classification and Terminology of the ILAE (1989). Proposal for revised classification of epilepsies and epileptic syndromes. PubMed DOI
Crespo M. C., Tomé-Carneiro J., Gómez-Coronado D., Burgos-Ramos E., Garciá-Serrano A., Martín-Hernández R., et al. (2018). Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil. PubMed DOI PMC
Davis M. P. A., van Dongen S., Abreu-Goodger C., Bartonicek N., Enright A. J. (2013). Kraken: a set of tools for quality control and analysis of high-throughput sequence data. PubMed DOI PMC
Dluzen D. F., Noren Hooten N., Zhang Y., Kim Y., Glover F. E., Tajuddin S. M., et al. (2016). Racial differences in microRNA and gene expression in hypertensive women. PubMed DOI PMC
Gorter J. A., Iyer A., White I., Colzi A., van Vliet E. A., Sisodiya S., et al. (2014). Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. PubMed DOI
Gulyaeva L. F., Kushlinskiy N. E. (2016). Regulatory mechanisms of microRNA expression. PubMed DOI PMC
Henshall D. C. (2014). MicroRNA and epilepsy: profiling, functions and potential clinical applications. PubMed DOI PMC
Huan T., Chen G., Liu C., Bhattacharya A., Rong J., Chen B. H., et al. (2018). Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. PubMed DOI PMC
Huang S., Lv Z., Wen Y., Wei Y., Zhou L., Ke Y., et al. (2019). miR-129-2-3p directly targets SYK gene and associates with the risk of ischaemic stroke in a Chinese population. PubMed DOI PMC
Kaalund S. S., Venø M. T., Bak M., Møller R. S., Laursen H., Madsen F., et al. (2014). Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance. PubMed DOI
Kakimoto Y., Kamiguchi H., Ochiai E., Satoh F., Osawa M. (2015). MicroRNA stability in postmortem FFPE tissues: quantitative analysis using autoptic samples from acute myocardial infarction patients. PubMed DOI PMC
Kan A. A., van Erp S., Derijck A. A. H. A., de Wit M., Hessel E. V. S., O’Duibhir E., et al. (2012). Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. PubMed DOI PMC
Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., Altman D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PubMed DOI PMC
Korotkov A., Mills J. D., Gorter J. A., Van Vliet E. A., Aronica E. (2017). Systematic review and meta- analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. PubMed DOI PMC
Kozomara A., Griffiths-Jones S. (2014). MiRBase: annotating high confidence microRNAs using deep sequencing data. PubMed DOI PMC
Kretschmann A., Danis B., Andonovic L., Abnaof K., van Rikxoort M., Siegel F., et al. (2014). Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. PubMed DOI PMC
Kubová H., Mareš P. (2013). Are morphologic and functional consequences of status epilepticus in infant rats progressive? PubMed DOI
Kubová H., Mares P., Suchomelová L., Brozek G., Druga R., Pitkänen A. (2004). Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. PubMed DOI
Leung A. K. L., Sharp P. A. (2010). MicroRNA functions in stress responses. PubMed DOI PMC
Li Y., Kowdley K. V. (2012). MicroRNAs in common human diseases. PubMed DOI PMC
Liu D. Z., Tian Y., Ander B. P., Xu H., Stamova B. S., Zhan X., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. PubMed DOI PMC
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. PubMed DOI PMC
Mandolesi G., De Vito F., Musella A., Gentile A., Bullitta S., Fresegna D., et al. (2017). MiR-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. PubMed DOI PMC
Mannironi C., Biundo A., Rajendran S., De Vito F., Saba L., Caioli S., et al. (2018). miR-135a Regulates synaptic transmission and anxiety-like behavior in amygdala. PubMed DOI
Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. DOI
McKiernan R. C., Jimenez-Mateos E. M., Bray I., Engel T., Brennan G. P., Sano T., et al. (2012a). Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PubMed DOI PMC
McKiernan R. C., Jimenez-Mateos E. M., Sano T., Bray I., Stallings R. L., Simon R. P., et al. (2012b). Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. PubMed DOI PMC
Mikulecká A., Druga R., Stuchlík A., Mareš P., Kubová H. (2019). Comorbidities of early-onset temporal epilepsy: cognitive, social, emotional, and morphologic dimensions. PubMed DOI
Nairismägi J., Pitkänen A., Kettunen M. I., Kauppinen R. A., Kubova H. (2006). Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. PubMed DOI
Rao Y. S., Pak T. R. (2016). microRNAs and the adolescent brain: filling the knowledge gap. PubMed DOI PMC
Risbud R. M., Porter B. E. (2013). Changes in MicroRNA Expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PubMed DOI PMC
Roncon P., Soukupovà M., Binaschi A., Falcicchia C., Zucchini S., Ferracin M., et al. (2015). MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. PubMed DOI PMC
Rutten A., Van Albada M., Silveira D. C., Cha B. H., Liu X., Hu Y. N., et al. (2002). Memory impairment following status epilepticus in immature rats: time-course and environmental effects. PubMed DOI
Srinivasan S., Selvan S. T., Archunan G., Gulyas B., Padmanabhan P. (2013). MicroRNAs -the next generation therapeutic targets in human diseases. PubMed DOI PMC
Thom M., Eriksson S., Martinian L., Caboclo L. O., McEvoy A. W., Duncan J. S., et al. (2009). Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features. PubMed DOI PMC
Tobón K. E., Chang D., Kuzhikandathil E. V. (2012). MicroRNA 142-3p mediates post-transcriptional regulation of D1 dopamine receptor expression. PubMed DOI PMC
Turski L., Cavalheiro E. A., Sieklucka-Dziuba M., Ikonomidou-Turski C., Czuczwar S. J., Turski W. A. (1986). Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain. PubMed DOI
Umehara T., Mori R., Mace K. A., Murase T., Abe Y., Yamamoto T., et al. (2019). Identification of specific miRNAs in neutrophils of type 2 diabetic mice: overexpression of miRNA-129-2-3p accelerates diabetic wound healing. PubMed DOI
van Battum E. Y., Verhagen M. G., Vangoor V. R., Fujita Y., Derijck A. A. H. A., O’Duibhir E., et al. (2018). An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting krüppel-like factor 4. PubMed DOI PMC
Vangoor V. R., Reschke C. R., Senthilkumar K., Van De Haar L. L., de Wit M., Giuliani G., et al. (2019). Antagonizing increased miR-135a levels at the chronic stage of experimental TLE reduces spontaneous recurrent seizures. PubMed DOI PMC
Vitsios D. M., Enright A. J. (2015). Chimira: analysis of small RNA sequencing data and microRNA modifications: fig. 1. PubMed DOI PMC
Vlachos I. S., Zagganas K., Paraskevopoulou M. D., Georgakilas G., Karagkouni D., Vergoulis T., et al. (2015). DIANA-miRPath v3.0: deciphering microRNA function with experimental support. PubMed DOI PMC
Wong N., Wang X. (2015). miRDB: an online resource for microRNA target prediction and functional annotations. PubMed DOI PMC