Most cited article - PubMed ID 23353839
Impact of histone deacetylase inhibitor valproic acid on the anticancer effect of etoposide on neuroblastoma cells
Neuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system. Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated. Treatment of these cells with ellipticine in combination with VPA led to the synergism of their anticancer efficacy. The effect is more pronounced in the UKF-NB-4 cell line, the line with N-myc amplification, than in SH-SY5Y cells. This was associated with caspase-3-dependent induction of apoptosis in UKF-NB-4 cells. The increase in cytotoxicity of ellipticine in UKF-NB-4 by VPA is dictated by the sequence of drug administration; the increased cytotoxicity was seen only after either simultaneous exposure to these drugs or after pretreatment of cells with ellipticine before their treatment with VPA. The synergism of treatment of cells with VPA and ellipticine seems to be connected with increased acetylation of histones H3 and H4. Further, co-treatment of cells with ellipticine and VPA increased the formation of ellipticine-derived DNA adducts, which indicates an easier accessibility of ellipticine to DNA in cells by its co-treatment with VPA and also resulted in higher ellipticine cytotoxicity. The results are promising for in vivo studies and perhaps later for clinical studies of combined treatment of children suffering from high-risk NBL.
- Keywords
- DNA damage, acetylation of histones, apoptosis, ellipticine, neuroblastoma, valproate,
- MeSH
- Apoptosis MeSH
- Ellipticines toxicity MeSH
- Histone Deacetylase Inhibitors toxicity MeSH
- Valproic Acid toxicity MeSH
- Humans MeSH
- Mutagens toxicity MeSH
- Cell Line, Tumor MeSH
- Neuroblastoma metabolism MeSH
- Neurons drug effects metabolism MeSH
- Drug Synergism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ellipticines MeSH
- ellipticine MeSH Browser
- Histone Deacetylase Inhibitors MeSH
- Valproic Acid MeSH
- Mutagens MeSH
Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible limitations to use VPA in cancer therapy.
- MeSH
- AC133 Antigen metabolism MeSH
- Cell Cycle drug effects MeSH
- Cytostatic Agents pharmacology MeSH
- Fluorescent Antibody Technique MeSH
- Caspase 3 metabolism MeSH
- Valproic Acid pharmacology MeSH
- Humans MeSH
- Biomarkers, Tumor metabolism MeSH
- Cell Line, Tumor MeSH
- Neuroblastoma drug therapy MeSH
- Antineoplastic Agents pharmacology MeSH
- Flow Cytometry MeSH
- Blotting, Western MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- AC133 Antigen MeSH
- Cytostatic Agents MeSH
- Caspase 3 MeSH
- Valproic Acid MeSH
- Biomarkers, Tumor MeSH
- Antineoplastic Agents MeSH