Nejvíce citovaný článek - PubMed ID 23436061
Spontaneous vegetation succession at different central European mining sites: a comparison across seres
Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are the most abundant and widespread types of mycorrhizal symbiosis, but there is little and sometimes conflicting information regarding the interaction between AM fungi (AMF) and EcM fungi (EcMF) in soils. Their competition for resources can be particularly relevant in successional ecosystems, which usually present a transition from AM-forming herbaceous vegetation to EcM-forming woody species. The aims of this study were to describe the interaction between mycorrhizal fungal communities associated with AM and EcM hosts naturally coexisting during primary succession on spoil banks and to evaluate how this interaction affects growth and mycorrhizal colonization of seedlings of both species. We conducted a greenhouse microcosm experiment with Betula pendula and Hieracium caespitosum as EcM and AM hosts, respectively. They were cultivated in three-compartment rhizoboxes. Two lateral compartments contained different combinations of both host plants as sources of fungal mycelia colonizing the middle compartment, where fungal biomass, diversity, and community composition as well as the growth of each host plant species' seedlings were analyzed. The study's main finding was an asymmetric outcome of the interaction between the two plant species: while H. caespitosum and associated AMF reduced the abundance of EcMF in soil, modified the composition of EcMF communities, and also tended to decrease growth and mycorrhizal colonization of B. pendula seedlings, the EcM host did not have such effects on AM plants and associated AMF. In the context of primary succession, these findings suggest that ruderal AM hosts could hinder the development of EcM tree seedlings, thus slowing the transition from AM-dominated to EcM-dominated vegetation in early successional stages.
- Klíčová slova
- Betula pendula, Hieracium caespitosum, arbuscular mycorrhizae, ectomycorrhizae, mycorrhizal networks, primary succession,
- Publikační typ
- časopisecké články MeSH
Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age.
- Klíčová slova
- Glomeromycota, biodiversity, community ecology, ecosystem development, fungal and plant succession, mycorrhiza,
- Publikační typ
- časopisecké články MeSH
Seed characteristics play an important role in the colonization and subsequent persistence of species during succession in disturbed sites and thus may contribute to being able to predict restoration success. In the present study, we investigated how various seed characteristics participated in 11 spontaneous successional series running in different mining sites (spoil heaps, extracted sand and sand-gravel pits, extracted peatlands, and stone quarries) in the Czech Republic, Central Europe. Using 1864 samples from 1- to 100-years-old successional stages, we tested whether species optimum along the succession gradient could be predicted using 10 basic species traits connected with diaspores and dispersal. Seed longevity, diaspore mass, endozoochory, and autochory appeared to be the best predictors. The results indicate that seed characteristics can predict to a certain degree spontaneous vegetation succession, i.e., passive restoration, in the mining sites. A screening of species available in the given landscape (regional and local species pools) may help to identify those species which would potentially colonize the disturbed sites. Extensive databases of species traits, nowadays available for the Central European flora, enable such screening.
- Klíčová slova
- Dispersal types, Life history traits, Meta-analysis, Mining sites, Passive restoration, Primary succession, Spontaneous succession,
- MeSH
- časové faktory MeSH
- distribuce rostlin * MeSH
- ekosystém MeSH
- hornictví * MeSH
- regenerace a remediace životního prostředí * MeSH
- semena rostlinná růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Vegetation development of sites restored by two different methods, spontaneous revegetation and forestry reclamation, was compared in four sand pit mining complexes located in the southern part of the Czech Republic, central Europe. The space-for-time substitution method was applied to collect vegetation records in 13 differently aged and sufficiently large sites with known history. The restoration method, age (time since site abandonment/reclamation), groundwater table, slope, and aspect in all sampled plots were recorded in addition to the visual estimation of percentage cover of all present vascular plant species. Multivariate methods and GLM were used for the data elaboration. Restoration method was the major factor influencing species pattern. Both spontaneously revegetated and forestry reclaimed sites developed towards forest on a comparable timescale. Although the sites did not significantly differ in species richness (160 species in spontaneously revegetated vs. 111 in forestry reclaimed sites), spontaneously revegetated sites tended to be more diverse with more species of conservation potential (10 Red List species in spontaneous sites vs. 4 Red List species in forestry reclaimed sites). These results support the use of spontaneous revegetation as an effective and low-cost method of sand pit restoration and may contribute to implementation of this method in practice.
- Klíčová slova
- Afforestation, Mining, Passive restoration, Spontaneous succession, Vegetation,
- MeSH
- hornictví * MeSH
- lesnictví * MeSH
- regenerace a remediace životního prostředí ekonomika metody MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
Open interior sands represent a highly threatened habitat in Europe. In recent times, their associated organisms have often found secondary refuges outside their natural habitats, mainly in sand pits. We investigated the effects of different restoration approaches, i.e. spontaneous succession without additional disturbances, spontaneous succession with additional disturbances caused by recreational activities, and forestry reclamation, on the diversity and conservation values of spiders, beetles, flies, bees and wasps, orthopterans and vascular plants in a large sand pit in the Czech Republic, Central Europe. Out of 406 species recorded in total, 112 were classified as open sand specialists and 71 as threatened. The sites restored through spontaneous succession with additional disturbances hosted the largest proportion of open sand specialists and threatened species. The forestry reclamations, in contrast, hosted few such species. The sites with spontaneous succession without disturbances represent a transition between these two approaches. While restoration through spontaneous succession favours biodiversity in contrast to forestry reclamation, additional disturbances are necessary to maintain early successional habitats essential for threatened species and open sand specialists. Therefore, recreational activities seem to be an economically efficient restoration tool that will also benefit biodiversity in sand pits.
- Klíčová slova
- Biodiversity conservation, Human-made habitats, Post-industrial sites, Restoration ecology, Sand mining, Trampling management,
- MeSH
- biodiverzita * MeSH
- časové faktory MeSH
- členovci MeSH
- hornictví * MeSH
- lesnictví * MeSH
- rostliny MeSH
- zachování přírodních zdrojů metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH