Most cited article - PubMed ID 23574515
Comparative demography of two co-occurring Linum species with different distribution patterns
AIM: Habitat loss and fragmentation impose high extinction risk upon endangered plant species globally. For many endangered plant species, as the remnant habitats become smaller and more fragmented, it is vital to estimate the population spread rate of small patches in order to effectively manage and preserve them for potential future range expansion. However, population spread rate has rarely been quantified at the patch level to inform conservation strategies and management decisions. To close this gap, we quantify the patch-specific seed dispersal and local population dynamics of Minuartia smejkalii, which is a critically endangered plant species endemic in the Czech Republic and is of urgent conservation concern. LOCATION: Želivka and Hrnčíře, Czechia. METHODS: We conducted demographic analyses using population projection matrices with long-term demographic data and used an analytic mechanistic dispersal model to simulate seed dispersal. We then used information on local population dynamics and seed dispersal to estimate the population spread rate and compared the relative contributions of seed dispersal and population growth rate to the population spread rate. RESULTS: We found that although both seed dispersal and population growth rate in M. smejkalii were critically limited, the population spread rate depended more strongly on the maximal dispersal distance than on the population growth rate. MAIN CONCLUSIONS: We recommend conservationists to largely increase the dispersal distance of M. smejkalii. Generally, efforts made to increase seed dispersal ability could largely raise efficiency and effectiveness of conservation actions for critically endangered plant species.
BACKGROUND: Many studies compare the population dynamics of single species within multiple habitat types, while much less is known about the differences in population dynamics in closely related species in the same habitat. Additionally, comparisons of the effect of habitat types and species are largely missing. METHODOLOGY AND PRINCIPAL FINDINGS: We estimated the importance of the habitat type and species for population dynamics of plants. Specifically, we compared the dynamics of two closely related species, the allotetraploid species Anthericum liliago and the diploid species Anthericum ramosum, occurring in the same habitat type. We also compared the dynamics of A. ramosum in two contrasting habitats. We examined three populations per species and habitat type. The results showed that single life history traits as well as the mean population dynamics of A. liliago and A. ramosum from the same habitat type were more similar than the population dynamics of A. ramosum from the two contrasting habitats. CONCLUSIONS: Our findings suggest that when transferring knowledge regarding population dynamics between populations, we need to take habitat conditions into account, as these conditions appear to be more important than the species involved (ploidy level). However, the two species differ significantly in their overall population growth rates, indicating that the ploidy level has an effect on species performance. In contrast to what has been suggested by previous studies, we observed a higher population growth rate in the diploid species. This is in agreement with the wider range of habitats occupied by the diploid species.