Nejvíce citovaný článek - PubMed ID 23580629
INTRODUCTION: Although the effects of carrying loads on gait biomechanics have been well-documented, to date, little evidence has been provided whether such loads may impact spatial and temporal gait asymmetries under the different foot regions. Therefore, the main purpose of the study was to examine the effects of carrying a standardized police equipment on spatiotemporal gait parameters. MATERIALS AND METHODS: In this population-based study, participants were 845 first-year police recruits (age: 21.2 ± 2.3 years; height: 178.1 ± 10.2 cm; weight: 78.4 ± 11.3 kg; body mass index: 24.7 ± 3.2 kg/m2; 609 men and 236 women; 72.1% men and 27.9% women) measured in 2 conditions: (i) "no load" and (ii) "a 3.5 kg load." Spatiotemporal gait parameters were derived from the FDM Zebris pressure platform. Asymmetry was calculated as (xright-xleft)/0.5*(xright + xleft)*100%, where "x" represented a given parameter being calculated and a value closer to 0 denoted greater symmetry. RESULTS: When compared to "no load" condition, a standardized 3.5 kg/7.7 lb load significantly increased asymmetries in spatial gait parameters as follows: gait phases of stance (mean diff. = 1.05), load response (mean diff. = 0.31), single limb support (mean diff. = 0.56), pre-swing (mean diff. = 0.22), and swing (mean diff. = 0.90) phase, while no significant asymmetries in foot rotation, step, and stride length were observed. For temporal gait parameters, we observed significant asymmetries in step time (mean diff. = -0.01), while no differences in cadence and gait speed were shown. CONCLUSIONS: The findings indicate that the additional load of 3.5 kg/7.7 lb is more likely to increase asymmetries in spatial gait cycle components, opposed to temporal parameters. Thus, external police load may have hazardous effects in increasing overall body asymmetry, which may lead to a higher injury risk and a decreased performance for completing specific everyday tasks.
- MeSH
- biomechanika fyziologie MeSH
- chůze (způsob) * fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- policie * statistika a číselné údaje MeSH
- zatížení muskuloskeletálního systému * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Although carrying external load has negative effects on gait biomechanics, little evidence has been provided regarding its impact on body asymmetry. The main purpose of the present study was to examine, whether standardized equipment produced greater gait asymmetries in ground reaction force and plantar pressure. METHODS: For the purpose of this study, we recruited 845 police recruits (609 men and 236 women; 72.1% men and 27.9% women) measured in two conditions: (i) 'no load' and (ii) 'a 3.5 kg load'. Absolute values in ground reaction forces and plantar pressures beneath the different foot regions were assessed with pedobarographic platform (Zebris FDM). Asymmetry was calculated as (xright - xleft)/0.5 × (xright + xleft) × 100%, where 'x' represented a given parameter being calculated and a value closer to 0 denoted greater symmetry. RESULTS: Significant differences in ground reaction forces and plantar pressures between the left and right foot were observed, when adding 'a 3.5 kg load'. Compared to the 'no load' condition, carrying 'a 3.5 kg load' significantly increased gait asymmetries for maximal ground reaction forces beneath the forefoot (ES = 0.29), midfoot (ES = 0.20) and hindfoot (ES = 0.19) regions of the foot. For maximal plantar pressures, only the asymmetry beneath the midfoot region of the foot significantly increased (ES = 0.19). CONCLUSIONS: Findings of this study indicate that 'a 3.5 kg load' significantly increases ground reaction force and plantar pressure gait asymmetries beneath the forefoot and midfoot regions, compared to 'no load' condition. Due to higher loads, increases in kinetic gait asymmetries may have negative effects on future pain and discomfort in the foot area, possibly causing stress fractures and deviated gait biomechanics in police recruits.
- Klíčová slova
- effect size, load carriage, police equipment, special populations, symmetry,
- Publikační typ
- časopisecké články MeSH
Although excessive load carriage results in biomechanical gait changes, little evidence has been provided regarding its impact on postural sway. Therefore, the main purpose of this study was to determine whether heavier loads have effects on changing foot stability and postural sway in special police officers. Thirty male special police officers (age = 40 ± 6 years, height = 180 ± 5 cm, weight = 89 ± 8 kg) were assessed in four conditions: (1) carrying no load, (2) carrying a 5 kg load, (3) carrying a 25 kg load, and (4) carrying a 45 kg load. Foot characteristics during standing were assessed with Zebris pedobarographic pressure platform. Heavier loads increased the center of pressure (COP) path length and average velocity, length of minor and major axis, and 95% confidence ellipse area, while a decrease in angle between Y and major axis was observed. Relative forces beneath the left forefoot and right backfoot regions decreased and an increase in relative forces beneath the left backfoot and right forefoot was observed. When carrying heavy loads, static foot parameters rapidly changed, especially in COP path length and average velocity.
- Klíčová slova
- center of pressure, changes, gait movement, heavy load, special police,
- MeSH
- chůze (způsob) MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- noha (od hlezna dolů) MeSH
- policie * MeSH
- posturální rovnováha * MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH