Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts.
Magnetoreception, the ability to sense the Earth's magnetic field (MF), is a widespread phenomenon in the animal kingdom. In 1966, the first report on a magnetosensitive vertebrate, the European robin (Erithacus rubecula), was published. After that, numerous further species of different taxa have been identified to be magnetosensitive as well. Recently, it has been demonstrated that domestic dogs (Canis lupus familiaris) prefer to align their body axis along the North-South axis during territorial marking under calm MF conditions and that they abandon this preference when the Earth's MF is unstable. In a further study conducting a directional two-choice-test, dogs showed a spontaneous preference for the northern direction. Being designated as putatively magnetosensitive and being also known as trainable for diverse choice and search tests, dogs seem to be suitable model animals for a direct test of magnetoreception: learning to find a magnet. Using operant conditioning dogs were trained to identify the MF of a bar magnet in a three-alternative forced-choice experiment. We excluded visual cues and used control trials with food treats to test for the role of olfaction in finding the magnet. While 13 out of 16 dogs detected the magnet significantly above chance level (53-73% success rate), none of the dogs managed to do so in finding the food treat (23-40% success rate). In a replication of the experiment under strictly blinded conditions five out of six dogs detected the magnet above chance level (53-63% success rate). These experiments support the existence of a magnetic sense in domestic dogs. Whether the sense enables dogs to perceive MFs as weak as the Earth's MF, if they use it for orientation, and by which mechanism the fields are perceived remain open questions.
- Keywords
- Behavioral test, Domestic dogs, Magnetoreception, Operant conditioning,
- Publication type
- Journal Article MeSH
Subterranean rodents are able to dig long straight tunnels. Keeping the course of such "runways" is important in the context of optimal foraging strategies and natal or mating dispersal. These tunnels are built in the course of a long time, and in social species, by several animals. Although the ability to keep the course of digging has already been described in the 1950s, its proximate mechanism could still not be satisfactorily explained. Here, we analyzed the directional orientation of 68 burrow systems in five subterranean rodent species (Fukomys anselli, F. mechowii, Heliophobius argenteocinereus, Spalax galili, and Ctenomys talarum) on the base of detailed maps of burrow systems charted within the framework of other studies and provided to us. The directional orientation of the vast majority of all evaluated burrow systems on the individual level (94%) showed a significant deviation from a random distribution. The second order statistics (averaging mean vectors of all the studied burrow systems of a respective species) revealed significant deviations from random distribution with a prevalence of north-south (H. argenteocinereus), NNW-SSE (C. talarum), and NE-SW (Fukomys mole-rats) oriented tunnels. Burrow systems of S. galili were randomly oriented. We suggest that the Earth's magnetic field acts as a common heading indicator, facilitating to keep the course of digging. This study provides a field test and further evidence for magnetoreception and its biological meaning in subterranean mammals. Furthermore, it lays the foundation for future field experiments.
- Keywords
- Burrow systems, Magnetoreception, Mole-rats, Orientation, Subterranean rodents,
- Publication type
- Journal Article MeSH
The mammalian magnetic sense is predominantly studied in species with reduced vision such as mole-rats and bats. Far less is known about surface-dwelling (epigeic) rodents with well-developed eyes. Here, we tested the wood mouse Apodemus sylvaticus for magnetoreception using a simple behavioural assay in which mice are allowed to build nests overnight in a visually symmetrical, circular arena. The tests were performed in the ambient magnetic field or in a field rotated by 90°. When plotted with respect to magnetic north, the nests were bimodally clustered in the northern and southern sectors, clearly indicating that the animals used magnetic cues. Additionally, mice were tested in the ambient magnetic field with a superimposed radio frequency magnetic field of the order of 100 nT. Wood mice exposed to a 0.9 to 5 MHz frequency sweep changed their preference from north-south to east-west. In contrast to birds, however, a constant frequency field tuned to the Larmor frequency (1.33 MHz) had no effect on mouse orientation. In sum, we demonstrated magnetoreception in wood mice and provide first evidence for a radical-pair mechanism in a mammal.
- MeSH
- Sensation physiology MeSH
- Electromagnetic Radiation MeSH
- Nesting Behavior physiology MeSH
- Magnetic Fields * MeSH
- Murinae physiology MeSH
- Orientation physiology MeSH
- Radio Waves MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
INTRODUCTION: Several mammalian species spontaneously align their body axis with respect to the Earth's magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics. RESULTS: Dogs preferred to excrete with the body being aligned along the North-South axis under calm MF conditions. This directional behavior was abolished under unstable MF. The best predictor of the behavioral switch was the rate of change in declination, i.e., polar orientation of the MF. CONCLUSIONS: It is for the first time that (a) magnetic sensitivity was proved in dogs, (b) a measurable, predictable behavioral reaction upon natural MF fluctuations could be unambiguously proven in a mammal, and (c) high sensitivity to small changes in polarity, rather than in intensity, of MF was identified as biologically meaningful. Our findings open new horizons in magnetoreception research. Since the MF is calm in only about 20% of the daylight period, our findings might provide an explanation why many magnetoreception experiments were hardly replicable and why directional values of records in diverse observations are frequently compromised by scatter.
- Publication type
- Journal Article MeSH