Most cited article - PubMed ID 24004520
Comparison of child morbidity in regions of Ostrava, Czech Republic, with different degrees of pollution: a retrospective cohort study
This study investigates the chemical composition of water-soluble inorganic ions at eight localities situated in the Moravian-Silesian Region (the Czech Republic) at the border with Poland. Water-soluble inorganic ions were monitored in the winter period of 2018 (January, 11 days and February, 5 days). The set was divided into two periods: the acceptable period (the 24-h concentration of PM10 < 50 µg/m3) and the period with exceeded pollution (PM10 ˃ 50 µg/m3). Air quality in the Moravian-Silesian Region and Upper Silesia is among the most polluted in Europe, especially in the winter season when the concentration of PM10 is repeatedly exceeded. The information on the occurrence and behaviour of water-soluble inorganic ions in the air during the smog episodes in Europe is insufficient. The concentrations of water-soluble ions (chlorides, sulphates, nitrates, ammonium ions, potassium) during the exceeded period are higher by two to three times compared with the acceptable period. The major anions for both acceptable period and exceeded pollution are nitrates. During the period of exceeded pollution, percentages of water-soluble ions in PM10 decrease while percentages of carbonaceous matter and insoluble particles (fly ash) increase.
- Keywords
- air pollution, enrichment factor, meteorological parameters, particulate matter, water-soluble inorganic ions,
- MeSH
- Ions MeSH
- Air Pollutants * MeSH
- Environmental Monitoring * MeSH
- Particulate Matter * MeSH
- Seasons MeSH
- Particle Size MeSH
- Water MeSH
- Air Pollution * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Europe MeSH
- Poland MeSH
- Names of Substances
- Ions MeSH
- Air Pollutants * MeSH
- Particulate Matter * MeSH
- Water MeSH
The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM1 and PM10 (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM1 and PM10 chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM10 concentration was measured in Radvanice than in Plesná, whereas PM1 concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM10 and PM1, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM10 and 27% for PM1), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM10 and 36% for PM1). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM10 and PM1, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.
- Keywords
- Chemical size distribution, Industrial site, Inter-site comparison, PM1, PM10, Positive matrix factorization,
- MeSH
- Environmental Monitoring MeSH
- Particulate Matter analysis MeSH
- Particle Size MeSH
- Cities MeSH
- Wind MeSH
- Air Pollution analysis MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Poland MeSH
- Cities MeSH
- Names of Substances
- Particulate Matter MeSH