Nejvíce citovaný článek - PubMed ID 24215522
Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling
The American red flat bark beetle, Cucujus clavipes, is a wide distributed saproxylic species divided into two subspecies: ssp. clavipes restricted to eastern regions of North America and ssp. puniceus occurring only in western regions of this continent. Unique morphological features, including body shape and body coloration, make this species easy to recognize even for amateurs. Surprisingly, except some studies focused on physiological adaptations of the species, the ecology of C. clavipes was almost unstudied. Based on over 500 records collected by citizen scientists and deposited in the iNaturalist data base, we studied phenological activity of adult beetles, habitat preferences and impact of future climate change for both subspecies separately. The results clearly show that spp. clavipes and ssp. puniceus can be characterized by differences in phenology and macrohabitat preferences, and their ranges do not overlap at any point. Spp. clavipes is found as more opportunistic taxon occurring in different forests as well as in urban and agricultural areas with tree vegetation always in elevations below 500 m, while elevational distribution of ssp. puniceus covers areas up to 2300 m, and the beetle was observed mainly in forested areas. Moreover, we expect that climate warming will have negative influence on both subspecies with the possible loss of proper niches at level even up to 47-70% of their actual ranges during next few decades. As the species is actually recognized as unthreatened and always co-occurs with many other species, we suggest, because of its expected future habitat loss, to pay more attention to conservationists for possible negative changes in saproxylic insects and/or forest fauna in North America. In addition, as our results clearly show that both subspecies of C. clavipes differ ecologically, which strongly supports earlier significant morphological and physiological differences noted between them, we suggest that their taxonomical status should be verified by molecular data, because very probably they represent separate species.
- Klíčová slova
- Canada, Coleoptera, Cucujidae, North America, USA, citizen scientific data, habitat loss, iNaturalist, macrohabitat preferences, phenological activity,
- Publikační typ
- časopisecké články MeSH
Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12-BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/.
- MeSH
- ekosystém MeSH
- podnebí * MeSH
- shluková analýza MeSH
- teoretické modely * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH