Nejvíce citovaný článek - PubMed ID 24269343
Role of adipokinetic hormone in stimulation of salivary gland activities: the fire bug Pyrrhocoris apterus L. (Heteroptera) as a model species
The physiological and biochemical mechanisms that enable insects to feed on dry food to secure enough water for larval growth were investigated. The study was carried out with a plethora of physiological methods, ranging from the simple volumetric determination of O2 consumption and water intake to more advanced methods such as scanning microrespirography and thermovision imaging of insect's body temperature. The experiments were done on the European firebug, Pyrrhocoris apterus, which feeds exclusively on dry linden seeds. In order to survive, it needs to drink water or suck a sap from plants occasionally. It was found that the young larval instars compensate the occasional water deficiency by the increased production of metabolic water. The juvenile hormone (JH)-dependent production of metabolic water, which was previously found in other species consuming dry food, was achieved in P. apterus by total metabolic combustion of the dietary lipid (neutral seed oil). The water-producing, hypermetabolic larvae were heated from inside by endothermic energy released from the uncoupling of oxidation from oxidative phosphorylation. The "warm", hypermetabolic larvae burning the dietary oil into CO2 and water showed the increased rates of respiratory metabolism. Microrespirographic recording of these larvae revealed the ratio of the respiratory quotient (RQ, CO2/O2) of 0.7, which indicated the breakdown of a pure triglyceride. The warm hypermetabolic larvae could be easily spotted and distinguished from the "cold" larvae on the screen of a thermovision camera. The last instar larvae lacking the JH were always only cold. They metabolized a carbohydrate substrate exclusively (RQ = 1.0), while the dietary lipid was stored in the fat body. In comparison with the hypermetabolic larvae of some other species fed on dry food, which exhibited the highest rates of O2 consumption ever recorded in a living organism (10-20 mL O2/g per hour), the metabolic difference between the warm and cold larvae of P. apterus was only some 30% (not a reported 10-fold difference), which was presumably due to their ability to drink. We conclude that a very important, though still largely neglected, epigenetic biochemical role of insect JH depends on switchover between the utilization of dietary lipid (+JH; production of metabolic water) and carbohydrate (-JH; lipid storage in the fat body). The hypermetabolic water supply in insects fed on dry food, which is associated with enormous rates of O2 consumption, liberates endothermic energy that heats the body and potentially influences the insect thermoregulation. A possibility that the JH-dependent lipolytic hormone stimulates the total metabolic breakdown of nutritional lipids may be absolutely different from the currently known adipokinetic peptides that have been emphasized.
- Klíčová slova
- JH, O2 consumption, O2), Pyrrhocoris apterus, endothermic energy, hypermetabolism, juvenile hormone, respiratory quotient (CO2, uncoupling of oxidation, “warm” and “cold” larvae,
- Publikační typ
- časopisecké články MeSH
Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.
- Klíčová slova
- AKH gene, FoxO, adipokinetic hormones (AKH), anti-oxidative mechanisms, free radicals, insect endocrine system, insecticide, oxidative stress, signaling pathway,
- MeSH
- hmyz metabolismus MeSH
- hmyzí hormony metabolismus MeSH
- kyselina pyrrolidonkarboxylová analogy a deriváty metabolismus MeSH
- oligopeptidy metabolismus MeSH
- oxidační stres * MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adipokinetic hormone MeSH Prohlížeč
- hmyzí hormony MeSH
- kyselina pyrrolidonkarboxylová MeSH
- oligopeptidy MeSH