Most cited article - PubMed ID 24497131
Clinical studies monitoring circulating and disseminated tumor cells in gastrointestinal cancers
INTRODUCTION: This study analyzes peripheral blood samples from breast cancer (BC) patients. CTCs from peripheral blood were enriched by size-based separation and were then cultivated in vitro. The primary aim of this study was to demonstrate the antigen independent CTC separation method with high CTC recovery. Subsequently, CTCs enriched several times during the treatment were characterized molecularly. METHODS: Patients with different stages of BC (N = 167) were included into the study. All patients were candidates for surgery, surgical diagnostics, or were undergoing chemotherapy. In parallel, 20 patients were monitored regularly and in addition to CTC presence, also CTC character was examined by qPCR, with special focus on HER2 and ESR status. RESULTS: CTC positivity in the cohort was 76%. There was no significant difference between the tested groups, but the highest CTC occurrence was identified in the group undergoing surgery and similarly in the group before the start of neoadjuvant treatment. On the other hand, the lowest CTC frequencies were observed in the menopausal patient group (56%), ESR+ patient group (60%), and DCIS group (44.4%). It is worth noting that after completion of neoadjuvant therapy (NACT) CTCs were present in 77.7% of cases. On the other hand, patients under hormonal treatment were CTC positive only in 52% of cases. DISCUSSIONS: Interestingly, HER2 and ESR status of CTCs differs from the status of primary tumor. In 50% of patients HER2 status on CTCs changed not only from HER2+ to HER2-, but also from HER2- to HER2+ (33%). ESR status in CTCs changed only in one direction from ESR+ to ESR-. CONCLUSIONS: Data obtained from the present study suggest that BC is a heterogeneous disease but CTCs may be detected independently of the disease characteristics in 76% of patients at any time point during the course of the disease. This relatively high CTC occurrence in BC should be considered when planning the long-term patient monitoring.
- Keywords
- Breast cancer, CTCs, Circulating tumor cells, Cultivation, Gene expression, In vitro, MetaCell,
- MeSH
- Estrogen Receptor alpha genetics MeSH
- Adult MeSH
- Genetic Heterogeneity * MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor genetics MeSH
- Neoplastic Cells, Circulating pathology MeSH
- Breast Neoplasms blood genetics pathology MeSH
- Receptor, ErbB-2 genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Neoplasm Staging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Estrogen Receptor alpha MeSH
- ERBB2 protein, human MeSH Browser
- ESR1 protein, human MeSH Browser
- Biomarkers, Tumor MeSH
- Receptor, ErbB-2 MeSH
The focus of the study was to implement a new workflow for circulating tumor cells (CTCs) characterization that would allow the analysis of CTCs on a cytomorphological and molecular level in patients with diagnosed gynecological cancer. Our findings may be useful in future cancer patient management. The study introduces a size-based enrichment (MetaCell(®)) method for the separation of viable CTCs, followed by CTCs culturing in vitro and gene expression characterization. It is based on the observation of CTCs and DTCs (Disseminated Tumor Cells) in several case studies of ovarian, endometrial and cervical cancer by means of cytomorphology and gene expression profiling. The viability of the enriched CTCs was estimated using vital and lethal fluorescence nuclear staining. This type of staining may be predictive for the success rate of subsequent CTC growth in vitro. To identify CTCs in the enriched CTC fraction, cytomorphological evaluations based on vital fluorescence staining were followed by gene expression analysis of tumor-associated (TA) genes. Cytokeratin expression (KRT7, KRT19) was analyzed in combination with MUC1, MUC16, CD24, CD44 and ALDH1. Gene expression analysis has shown that short-term in vitro culture enhanced the differentiation process of the captured CTCs growing on a membrane. On the other hand, redundant white blood cells captured on the membrane were eliminated during a short-term culture. The most frequently elevated genes in ovarian cancer (serous type) are EPCAM, KRT19 and MUC1. It has been demonstrated that CTC presence revealed by cytomorphological evaluation may be usefully complemented by TA-gene expression analysis, to increase the sensitivity of the analysis.
- Keywords
- CTCs, cervical cancer, cultivation, endometrial cancer, gynecological cancers, in vitro, ovarian cancer,
- Publication type
- Journal Article MeSH
AIM: To investigate the feasibility of separation and cultivation of circulating tumor cells (CTCs) in pancreatic cancer (PaC) using a filtration device. METHODS: In total, 24 PaC patients who were candidates for surgical treatment were enrolled into the study. Peripheral blood samples were collected before an indicated surgery. For each patient, approximately 8 mL of venous blood was drawn from the antecubital veins. A new size-based separation MetaCell technology was used for enrichment and cultivation of CTCs in vitro. (Separated CTCs were cultured on a membrane in FBS enriched RPMI media and observed by inverted microscope. The cultured cells were analyzed by means of histochemistry and immunohistochemistry using the specific antibodies to identify the cell origin. RESULTS: CTCs were detected in 16 patients (66.7%) of the 24 evaluable patients. The CTC positivity did not reflect the disease stage, tumor size, or lymph node involvement. The same percentage of CTC positivity was observed in the metastatic and non-metastatic patients (66.7% vs 66.7%). We report a successful isolation of CTCs in PaC patients capturing proliferating cells. The cells were captured by a capillary action driven size-based filtration approach that enabled cells cultures from the viable CTCs to be unaffected by any antibodies or lysing solutions. The captured cancer cells displayed plasticity which enabled some cells to invade the separating membrane. Further, the cancer cells in the "bottom fraction", may represent a more invasive CTC-fraction. The CTCs were cultured in vitro for further downstream applications. CONCLUSION: The presented size-based filtration method enables culture of CTCs in vitro for possible downstream applications.
- Keywords
- Biomarker, Circulating tumor cells, Cultivation, Pancreatic cancer,
- MeSH
- Phenotype MeSH
- Filtration instrumentation MeSH
- Neoplasm Invasiveness MeSH
- Humans MeSH
- Membranes, Artificial * MeSH
- Biomarkers, Tumor metabolism MeSH
- Tumor Cells, Cultured MeSH
- Neoplastic Cells, Circulating metabolism pathology MeSH
- Pancreatic Neoplasms blood metabolism pathology MeSH
- Cell Movement MeSH
- Polycarboxylate Cement MeSH
- Porosity MeSH
- Cell Proliferation MeSH
- Cell Separation instrumentation MeSH
- Feasibility Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Membranes, Artificial * MeSH
- Biomarkers, Tumor MeSH
- polycarbonate MeSH Browser
- Polycarboxylate Cement MeSH