Nejvíce citovaný článek - PubMed ID 24639646
Software and hardware infrastructure for research in electrophysiology
The Neurodata Without Borders (abbreviation NWB) format is a current technology for storing neurophysiology data along with the associated metadata. Data stored in the format is organized into separate HDF5 files, each file usually storing the data associated with a single recording session. While the NWB format provides a structured method for storing data, so far there have not been tools which enable searching a collection of NWB files in order to find data of interest for a particular purpose. We describe here three tools to enable searching NWB files. The tools have different features making each of them most useful for a particular task. The first tool, called the NWB Query Engine, is written in Java. It allows searching the complete content of NWB files. It was designed for the first version of NWB (NWB 1) and supports most (but not all) features of the most recent version (NWB 2). For some searches, it is the fastest tool. The second tool, called "search_nwb" is written in Python and also allow searching the complete contents of NWB files. It works with both NWB 1 and NWB 2, as does the third tool. The third tool, called "nwbindexer" enables searching a collection of NWB files using a two-step process. In the first step, a utility is run which creates an SQLite database containing the metadata in a collection of NWB files. This database is then searched in the second step, using another utility. Once the index is built, this two-step processes allows faster searches than are done by the other tools, but does not enable as complete of searches. All three tools use a simple query language which was developed for this project. Software integrating the three tools into a web-interface is provided which enables searching NWB files by submitting a web form.
- Klíčová slova
- HDF5, Java, NWB format, Python, SQLite, metadata, neurophysiology, search,
- Publikační typ
- časopisecké články MeSH
Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health) to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions.
- Klíčová slova
- Chronic disease, Cognitive and physical performance, Data acquisition, Data collection, Health related data, Reaction time, Software for data collection,
- Publikační typ
- časopisecké články MeSH
PURPOSE: The purpose of this study is to investigate the feasibility of applying openEHR (an archetype-based approach for electronic health records representation) to modeling data stored in EEGBase, a portal for experimental electroencephalography/event-related potential (EEG/ERP) data management. The study evaluates re-usage of existing openEHR archetypes and proposes a set of new archetypes together with the openEHR templates covering the domain. The main goals of the study are to (i) link existing EEGBase data/metadata and openEHR archetype structures and (ii) propose a new openEHR archetype set describing the EEG/ERP domain since this set of archetypes currently does not exist in public repositories. METHODS: The main methodology is based on the determination of the concepts obtained from EEGBase experimental data and metadata that are expressible structurally by the openEHR reference model and semantically by openEHR archetypes. In addition, templates as the third openEHR resource allow us to define constraints over archetypes. Clinical Knowledge Manager (CKM), a public openEHR archetype repository, was searched for the archetypes matching the determined concepts. According to the search results, the archetypes already existing in CKM were applied and the archetypes not existing in the CKM were newly developed. openEHR archetypes support linkage to external terminologies. To increase semantic interoperability of the new archetypes, binding with the existing odML electrophysiological terminology was assured. Further, to increase structural interoperability, also other current solutions besides EEGBase were considered during the development phase. Finally, a set of templates using the selected archetypes was created to meet EEGBase requirements. RESULTS: A set of eleven archetypes that encompassed the domain of experimental EEG/ERP measurements were identified. Of these, six were reused without changes, one was extended, and four were newly created. All archetypes were arranged in the templates reflecting the EEGBase metadata structure. A mechanism of odML terminology referencing was proposed to assure semantic interoperability of the archetypes. The openEHR approach was found to be useful not only for clinical purposes but also for experimental data modeling.
- Klíčová slova
- EHR, archetype, electroencephalography, event-related potentials, odML, ontology, openEHR,
- Publikační typ
- časopisecké články MeSH
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.
- Klíčová slova
- EEG/ERP portal, electrophysiology, object-oriented code, ontology, semantic framework, semantic web,
- Publikační typ
- časopisecké články MeSH