Nejvíce citovaný článek - PubMed ID 24877976
Ticks of the Hyalomma marginatum complex transported by migratory birds into Central Europe
Crimean-Congo haemorrhagic fever virus (CCHFV) poses a significant public health threat due to its potential for causing severe disease in humans and its wide geographic distribution. The virus, primarily transmitted by Hyalomma ticks, is prevalent across Africa, Asia, Europe, and the Middle East. Understanding the virus's spread among tick populations is crucial for assessing its transmission dynamics. Vertebrates play a key role in CCHF epidemiology by supporting tick populations and acting as virus carriers during viremia. Livestock, such as cattle, sheep, and goats, amplify the virus and increase tick numbers, posing zoonotic risks. Wildlife, while asymptomatic, can serve as reservoirs. Birds generally do not show signs of the virus but can introduce infected ticks to new regions. This review compiles information on CCHFV's tick vectors and vertebrate hosts, emphasizing their roles in the virus's transmission dynamics. Understanding these dynamics is essential for developing effective control and prevention strategies.
- Klíčová slova
- Crimean-Congo haemorrhagic fever virus, livestock, ticks, wildlife, zoonotic disease,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Crimean-Congo haemorrhagic fever (CCHF) is the most widely distributed tick-borne viral disease in humans and is caused by the Crimean-Congo haemorrhagic fever virus (CCHFV). The virus has a broader distribution, expanding from western China and South Asia to the Middle East, southeast Europe, and Africa. The historical known distribution of the CCHFV vector Hyalomma marginatum in Europe includes most of the Mediterranean and the Balkan countries, Ukraine, and southern Russia. Further expansion of its potential distribution may have occurred in and out of the Mediterranean region. This study updated the distributional map of the principal vector of CCHFV, H. marginatum, in the Old World using an ecological niche modeling approach based on occurrence records from the Global Biodiversity Information Facility (GBIF) and a set of covariates. The model predicted higher suitability of H. marginatum occurrences in diverse regions of Africa and Asia. Furthermore, the model estimated the environmental suitability of H. marginatum across Europe. On a continental scale, the model anticipated a widespread potential distribution encompassing the southern, western, central, and eastern parts of Europe, reaching as far north as the southern regions of Scandinavian countries. The distribution of H. marginatum also covered countries across Central Europe where the species is not autochthonous. All models were statistically robust and performed better than random expectations (p < 0.001). Based on the model results, climatic conditions could hamper the successful overwintering of H. marginatum and their survival as adults in many regions of the Old World. Regular updates of the models are still required to continually assess the areas at risk using up-to-date occurrence and climatic data in present-day and future conditions.
- MeSH
- hemoragická horečka krymská * epidemiologie MeSH
- Ixodidae * MeSH
- lidé MeSH
- nemoci přenášené klíšťaty * MeSH
- virus krymsko-konžské hemoragické horečky * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH