Nejvíce citovaný článek - PubMed ID 24879900
Silymarin and its constituents in cardiac preconditioning
Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using batch incubations inoculated by fecal slurry. Samples at selected time points were analyzed by ultrahigh-performance liquid chromatography equipped with mass spectrometry. The initial experiment using a concentration of 200 mg/L showed that flavonolignans are resistant to the metabolic action of intestinal microbiota. At the lower concentration of 10 mg/L, biotransformation of flavonolignans was much slower than that of taxifolin, which was completely degraded after 16 h. While silybin, isosilybin, and 2,3-dehydrosilybin underwent mostly demethylation, silychristin was predominantly reduced. Silydianin, 2,3-dehydrosilychristin and 2,3-dehydrosilydianin were reduced, as well, and decarbonylation and cysteine conjugation proceeded. No low-molecular-weight phenolic metabolites were detected for any of the compounds tested. Strong inter-individual differences in the biotransformation profile were observed among the four fecal-material donors. In conclusion, the flavonolignans, especially at higher (pharmacological) doses, are relatively resistant to biotransformation by gut microbiota, which, however, depends strongly on the individual structures of these isomeric compounds, but also on the stool donor.
- Klíčová slova
- UHPLC–MS, biotransformation, flavonolignans, gut microbiota, inter-individual differences, metabolites, silymarin,
- Publikační typ
- časopisecké články MeSH
2,3-dehydrosilybin (DHS) is a minor flavonolignan component of Silybum marianum seed extract known for its hepatoprotective activity. Recently we identified DHS as a potentially cardioprotective substance during hypoxia/reoxygenation in isolated neonatal rat cardiomyocytes. This is the first report of positive inotropic effect of DHS on perfused adult rat heart. When applied to perfused adult rat heart, DHS caused a dose-dependent inotropic effect resembling that of catecholamines. The effect was apparent with DHS concentration as low as 10 nM. Suspecting direct interaction with β-adrenergic receptors, we tested whether DHS can trigger β agonist-dependent gene transcription in a model cell line. While DHS alone was unable to trigger β agonist-dependent gene transcription, it enhanced the effect of isoproterenol, a known unspecific β agonist. Further tests confirmed that DHS could not induce cAMP accumulation in isolated neonatal rat cardiomyocytes even though high concentrations (≥ 10 μM) of DHS were capable of decreasing phosphodiesterase activity. Pre-treatment of rats with reserpine, an indole alkaloid which depletes catecholamines from peripheral sympathetic nerve endings, abolished the DHS inotropic effect in perfused hearts. Our data suggest that DHS causes the inotropic effect without acting as a β agonist. Hence we identify DHS as a novel inotropic agent.
- MeSH
- buněčné linie MeSH
- kardiomyocyty fyziologie MeSH
- kardiotonika farmakologie MeSH
- kontrakce myokardu účinky léků MeSH
- krysa rodu Rattus MeSH
- ostropestřec mariánský MeSH
- potkani Wistar MeSH
- reserpin farmakologie MeSH
- rostlinné přípravky farmakologie MeSH
- silibinin MeSH
- silymarin farmakologie MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kardiotonika MeSH
- reserpin MeSH
- rostlinné přípravky MeSH
- silibinin MeSH
- silymarin MeSH