Nejvíce citovaný článek - PubMed ID 24999619
Energy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives
Copper indium sulfide (CIS) nanocrystals constitute a promising alternative to cadmium- and lead-containing nanoparticles. We report a synthetic method that yields hydrophilic, core-only CIS quantum dots, exhibiting size-dependent, copper-deficient composition and optical properties that are suitable for direct coupling to biomolecules and nonradiative energy transfer applications. To assist such applications, we complemented previous studies covering the femtosecond-picosecond time scale with the investigation of slower radiative and nonradiative processes on the nanosecond time scale, using both time-resolved emission and transient absorption. As expected for core particles, relaxation occurs mainly nonradiatively, resulting in low, size-dependent photoluminescence quantum yield. The nonradiative relaxation from the first excited band is wavelength-dependent with lifetimes between 25 and 150 ns, reflecting the size distribution of the particles. Approximately constant lifetimes of around 65 ns were observed for nonradiative relaxation from the defect states at lower energies. The photoluminescence exhibited a large Stokes shift. The band gap emission decays on the order of 10 ns, while the defect emission is further red-shifted, and the lifetimes are on the order of 100 ns. Both sets of radiative lifetimes are wavelength-dependent, increasing toward longer wavelengths. Despite the low radiative quantum yield, the aqueous solubility and long lifetimes of the defect states are compatible with the proposed role of CIS quantum dots as excitation energy donors to biological molecules.
- Publikační typ
- časopisecké články MeSH
Chlorosomes are the main light-harvesting complexes of green photosynthetic bacteria that are adapted to a phototrophic life at low-light conditions. They contain a large number of bacteriochlorophyll c, d, or e molecules organized in self-assembling aggregates. Tight packing of the pigments results in strong excitonic interactions between the monomers, which leads to a redshift of the absorption spectra and excitation delocalization. Due to the large amount of disorder present in chlorosomes, the extent of delocalization is limited and further decreases in time after excitation. In this work we address the question whether the excitonic interactions between the bacteriochlorophyll c molecules are strong enough to maintain some extent of delocalization even after exciton relaxation. That would manifest itself by collective spontaneous emission, so-called superradiance. We show that despite a very low fluorescence quantum yield and short excited state lifetime, both caused by the aggregation, chlorosomes indeed exhibit superradiance. The emission occurs from states delocalized over at least two molecules. In other words, the dipole strength of the emissive states is larger than for a bacteriochlorophyll c monomer. This represents an important functional mechanism increasing the probability of excitation energy transfer that is vital at low-light conditions. Similar behaviour was observed also in one type of artificial aggregates, and this may be beneficial for their potential use in artificial photosynthesis.
- MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriochlorofyly metabolismus MeSH
- biologické pigmenty metabolismus MeSH
- fotosyntéza * MeSH
- přenos energie MeSH
- proteinové agregáty * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bacteriochlorophyll c MeSH Prohlížeč
- bakteriální proteiny MeSH
- bakteriochlorofyly MeSH
- biologické pigmenty MeSH
- proteinové agregáty * MeSH