Nejvíce citovaný článek - PubMed ID 25093693
Computer-intensive simulation of solid-state NMR experiments using SIMPSON
In this paper, we provide an analytical description of the performance of the cross-polarization (CP) experiment, including linear ramps and adiabatic tangential sweeps, using effective Hamiltonians and simple rotations in 3D space. It is shown that radiofrequency field inhomogeneity induces a reduction in the transfer efficiency at increasing magic angle spinning (MAS) frequencies for both the ramp and the adiabatic CP experiments. The effect depends on the ratio of the dipolar coupling constant and the sample rotation frequency. In particular, our simulations show that for small dipolar couplings (1 kHz) and ultrafast MAS (above 100 kHz) the transfer efficiency is below 40 % when extended contact times up to 20 ms are used and relaxation losses are ignored. New recoupling and magnetization transfer techniques that are designed explicitly to account for inhomogeneous radiofrequency fields are needed.
- Publikační typ
- časopisecké články MeSH
Dipolar recoupling is a central concept in the nuclear magnetic resonance spectroscopy of powdered solids and is used to establish correlations between different nuclei by magnetization transfer. The efficiency of conventional cross-polarization methods is low because of the inherent radio frequency (rf) field inhomogeneity present in the magic angle spinning (MAS) experiments and the large chemical shift anisotropies at high magnetic fields. Very high transfer efficiencies can be obtained using optimal control–derived experiments. These sequences had to be optimized individually for a particular MAS frequency. We show that by adjusting the length and the rf field amplitude of the shaped pulse synchronously with sample rotation, optimal control sequences can be successfully applied over a range of MAS frequencies without the need of reoptimization. This feature greatly enhances their applicability on spectrometers operating at differing external fields where the MAS frequency needs to be adjusted to avoid detrimental resonance effects.
- Publikační typ
- časopisecké články MeSH
Sensitivity and resolution together determine the quality of NMR spectra in biological solids. For high-resolution structure determination with solid-state NMR, proton-detection emerged as an attractive strategy in the last few years. Recent progress in probe technology has extended the range of available MAS frequencies up to above 100 kHz, enabling the detection of resolved resonances from sidechain protons, which are important reporters of structure. Here we characterise the interplay between MAS frequency in the newly available range of 70-110 kHz and proton content on the spectral quality obtainable on a 1 GHz spectrometer for methyl resonances. Variable degrees of proton densities are tested on microcrystalline samples of the α-spectrin SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a perdeuterated matrix. The experimental results are supported by simulations that allow the prediction of the sensitivity outside this experimental frequency window. Our results facilitate the selection of the appropriate labelling scheme at a given MAS rotation frequency.
- Klíčová slova
- CH3 labelling, Magic angle spinning (MAS), Methyl isotopomers, Microcrystalline proteins, Selective deuteration, Solid state NMR,
- MeSH
- deuterium chemie MeSH
- metylace * MeSH
- nukleární magnetická rezonance biomolekulární metody MeSH
- protony * MeSH
- senzitivita a specificita MeSH
- spektrin chemie MeSH
- src homologní domény MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deuterium MeSH
- protony * MeSH
- spektrin MeSH