Most cited article - PubMed ID 25152513
Motility of fish spermatozoa: from external signaling to flagella response
Subclass Elasmobranchii belongs to an old evolutionary class of Chondrichthyes that diverged 450 mya, presenting a wide diversity of reproductive strategies while preserving the ancient mode of internal fertilization. Despite such evolutionary success, many species in this group are at serious risk of extinction. Understanding the principles of sperm progressive motility and physiology of such an ancient group of vertebrates is crucial for advancing future assisted reproductive techniques to safeguard this species and for deepening our understanding of the evolution of reproduction. Elasmobranchii species possess big spermatozoa (compared to bony fishes) with an elongated helical head and tail similar to one currently existing (but later diverged) in birds, reptiles, and amphibians, which can be considered an evolutionary ancient. These structures may be associated with the necessity to penetrate viscous ovarian fluid or the jelly layer of eggs, suggesting environmental viscosity as the driving pressure shaping large-sized sperm heads into helical shapes through evolution. We observed spermatozoa motility with high-speed video microscopy to capture sperm and flagellar motion in three Elasmobranchii species: the freshwater ray Potamotrygon motoro, the marine skate Raja asterias and the shark Scyliorhinus canicula. We investigated the effect of viscosity on spermatozoa motility parameters and its ability to break free from spermatozeugmata, move progressively, and perform directional changes. After 20 min of observation, the spermatozeugmata conserved their structure in a low viscosity media of 1000 mOsm/kg osmolality. In comparison, no remaining structure of spermatozeugmata could be found in high-viscosity media with 2% methylcellulose (MC) in all three species due to progressive spermatozoa motion. We find that spermatozoa's unique helical head-to-flagellum architecture is specific to promote locomotion in high-viscosity fluid; they cannot move progressively in low viscosity. The highest velocity for shark sperm was observed at 0.75% MC and 1% MC for ray and skate sperm. Viscosity stabilizes the flagellar propagation, producing rotational forces and allowing the helical head to "screw" into the media. Our observations suggest that the surrounding viscosity is critical to allowing spermatozoa progressive motility and enabling spermatozoa to control direction via newly observed head buckling in high viscosity. As such, the viscosity may be a key element controlling and regulating sperm performance and navigation during fertilization in the Elasmobranchii species.
- MeSH
- Biological Evolution MeSH
- Elasmobranchii * physiology MeSH
- Sperm Motility * physiology MeSH
- Spermatozoa * physiology cytology MeSH
- Viscosity MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
When, in the 1980s, I became interested in the spermatology of fish under the light microscope, active spermatozoa were only visible thanks to their head presenting a sort of "tremor." This situation was quite frustrating given the lack of possible information regarding the motor part called flagellum. We decided to apply simple technologies, including photography. Due to the high speed of the moving fish flagellum, the microscope illumination used a pulsed light strobe combined with a dark field microscope to record the flagellum image despite its small diameter (< 0.5 μm). Then came high-speed cinematographic microscopy up to 200 fps, as well as video cameras. At the end of the 1990s, an automatic moving object video tracking system began to be commercialized (CASA) with main advantages such as (a) a large number of cells tracked, which greatly improves statistics, (b) computer assistance allowing an automatic analysis that provides many motility parameters. Nevertheless, CASA systems are still unable to provide information about fish sperm flagella that move fast. During the 1990s, analog video camera technologies allowed acquisition of flagellum images with high resolution for detailed analysis. Since the 2000s, the use of high-speed video cameras allows the acquisition of images at a much higher resolution and frequency, up to 10,000 frames per second. Since it became possible to visualize the flagella in motion, a noble function was added to that of a propeller: that of a rudder with what a spermatozoon responds to specific signals delivered by the egg for its guidance. In the future, one can wish that an automatic flagella movement analyzer will become functional. This brief anthology puts forward the large amount of progress accomplished during past 40-year period about spermatozoa movement analysis, especially in fish.
- Keywords
- CASA, Flagellum, High-speed video microscopy, Signaling, Sperm guidance,
- MeSH
- Cyclic AMP physiology MeSH
- History, 17th Century MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Potassium physiology MeSH
- Fertilization MeSH
- Hydrodynamics MeSH
- Sperm Motility MeSH
- Fishes physiology MeSH
- Spermatozoa physiology MeSH
- Temperature MeSH
- Developmental Biology history MeSH
- Animals MeSH
- Check Tag
- History, 17th Century MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Names of Substances
- Cyclic AMP MeSH
- Potassium MeSH