Nejvíce citovaný článek - PubMed ID 25462625
Salicylanilide diethyl phosphates as cholinesterases inhibitors
A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
- Klíčová slova
- bioassays, carbamates, cholinesterase inhibitors, molecular modeling, sulfonamides, synthesis,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie MeSH
- karbamáty chemická syntéza chemie MeSH
- katalytická doména MeSH
- lidé MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- sulfonamidy chemická syntéza chemie MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- BCHE protein, human MeSH Prohlížeč
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- karbamáty MeSH
- sulfonamidy MeSH
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer's disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman's spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5-228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine-an established cholinesterases inhibitor used in the treatment of Alzheimer's disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
- Klíčová slova
- acetylcholinesterase, benzamides, butyrylcholinesterase, enzyme inhibition, esters, in vitro inhibition, phosphorus derivatives, salicylanilides,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- benzamidy chemie farmakologie MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Electrophorus MeSH
- estery chemie farmakologie MeSH
- fosfor chemie MeSH
- inhibiční koncentrace 50 MeSH
- koně MeSH
- molekulární struktura MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- benzamidy MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- estery MeSH
- fosfor MeSH