Nejvíce citovaný článek - PubMed ID 25663146
Clostridioides difficile is one of the most important human pathogens. The identification of its possible sources is important for the understanding of C. difficile infection (CDI) epidemiology. A total of 16 water samples from wastewater and surface water in South Moravia in the Czech Republic and 82 samples of fish and gulls were collected between May and July 2019. C. difficile isolates were cultured by direct plating and after enrichment on chromogenic media. Susceptibility testing to eight antimicrobials was performed by Etest. C. difficile isolates were characterized by ribotyping, multilocus sequence typing, multilocus tandem repeats analysis, and toxin gene detection. Samples from fish and gulls were C. difficile negative; a total of 15 C. difficile isolates from 8 out of 16 water samples were cultured (6 out of 14 surface water samples yielded 6 isolates, and 2 out of 2 wastewater samples yielded 9 isolates). Direct plating was culture positive in 6 out of 16 samples (12 isolates), and enrichment culture was positive in an additional 2 out of 16 samples (3 isolates). Twelve different ribotyping profiles and 14 sequence types of clades 1, 4, and 5 were identified. Five isolates did not carry genes for toxins, and eight isolates carried genes for toxins A and B; the remaining two isolates (RT078) carried the genes for toxins A, B, and binary. All C. difficile isolates were susceptible to amoxicillin, moxifloxacin, tetracycline, and vancomycin and resistant to ciprofloxacin. A high level of erythromycin resistance (>256 mg/L) was detected in eight isolates. Clindamycin resistance was found in 14 isolates, 6 of which showed a high level of resistance (>256 mg/L) and carried ermB. Surprisingly, one isolate (RT010, ST15) showed resistance to metronidazole (12 mg/L) with the presence of the plasmid pCD-METRO. In conclusion, a diverse spectrum of C. difficile strains was found in wastewater and surface water. A recently discovered plasmid-bound resistance to metronidazole was detected in C. difficile from the surface water sample. IMPORTANCE The combination of direct plating and culture after enrichment was used in order to gain a spectrum of C. difficile ribotypes present in the water samples. Toxigenic C. difficile ribotypes detected in surface water and in wastewater treatment plants overlapped with those derived from patients with CDI and/or animals. Importantly, a recently discovered plasmid-mediated resistance to metronidazole, a drug used for the treatment of CDI, was detected in C. difficile from river water.
- Klíčová slova
- MLST, antimicrobial resistance, erm(B), plasmid-bound metronidazole resistance, ribotyping, surface water, wastewater treatment plant,
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- bakteriální léková rezistence genetika MeSH
- Clostridioides difficile * genetika MeSH
- Clostridioides MeSH
- klostridiové infekce * veterinární MeSH
- lidé MeSH
- metronidazol farmakologie terapeutické užití MeSH
- mikrobiální testy citlivosti MeSH
- odpadní voda MeSH
- plazmidy genetika MeSH
- řeky MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- metronidazol MeSH
- odpadní voda MeSH
- voda MeSH
The monitoring of wastewater treatment plants is important for their proper functioning as well as for re-use of water and also to avoid possible circulation of human or animal pathogens in our environment. The samples in this study originated from a full-scale wastewater treatment plant where the structure of the bacterial community was monitored using 454-pyrosequencing. The composition differed in different parts of the plant. In the effluent, bacteria belonging to phyla Proteobacteria, Actinobacteria, TM7 and Bacteroidetes were most frequently detected. The presence of Mycobacterium sp., Mycobacterium avium, Norovirus, Hepatitis A and E viruses was examined using quantitative real-time PCR. Mycobacterium sp. was detected in the effluent in quantities of up to 10(4) cells/ml. Mycobacterium avium subsp. paratuberculosis and subsp. hominissuis were detected in amounts of up to 10(3) cells/ml, and Norovirus group 1 and 2 were also detected. Our findings show the importance of monitoring and controlling the occurrence of specific pathogens in effluent, mainly because of the negative impact on human health when the water is reused.