Nejvíce citovaný článek - PubMed ID 25851132
Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?
One of the key challenges linked with future food and nutritional security is to evaluate the interactive effect of climate variables on plants' growth, fitness, and yield parameters. These interactions may lead to unique shifts in the morphological, physiological, gene expression, or metabolite accumulation patterns, leading to an adaptation response that is specific to future climate scenarios. To understand such changes, we exposed spring wheat to 7 regimes (3 single and 4 combined climate treatments) composed of elevated temperature, the enhanced concentration of CO2, and progressive drought stress corresponding to the predicted climate of the year 2100. The physiological and metabolic responses were then compared with the current climate represented by the year 2020. We found that the elevated CO2 (eC) mitigated some of the effects of elevated temperature (eT) on physiological performance and metabolism. The metabolite profiling of leaves revealed 44 key metabolites, including saccharides, amino acids, and phenolics, accumulating contrastingly under individual regimes. These metabolites belong to the central metabolic pathways that are essential for cellular energy, production of biosynthetic pathways precursors, and oxidative balance. The interaction of eC alleviated the negative effect of eT possibly by maintaining the rate of carbon fixation and accumulation of key metabolites and intermediates linked with the Krebs cycle and synthesis of phenolics. Our study for the first time revealed the influence of a specific climate factor on the accumulation of metabolic compounds in wheat. The current work could assist in the understanding and development of climate resilient wheat by utilizing the identified metabolites as breeding targets for food and nutritional security.
- Klíčová slova
- climate change, drought, elevated CO2, metabolomics, physiology, temperature, wheat,
- Publikační typ
- časopisecké články MeSH
Understorey plant communities are crucial to maintain species diversity and ecosystem processes including nutrient cycling and regeneration of overstorey trees. Most studies exploring effects of elevated CO2 concentration ([CO2]) in forests have, however, been done on overstorey trees, while understorey communities received only limited attention.The hypothesis that understorey grass species differ in shade-tolerance and development dynamics, and temporally exploit different niches under elevated [CO2], was tested during the fourth year of [CO2] treatment. We assumed stimulated carbon gain by elevated [CO2] even at low light conditions in strongly shade-tolerant Luzula sylvatica, while its stimulation under elevated [CO2] in less shade-tolerant Calamagrostis arundinacea was expected only in early spring when the tree canopy is not fully developed.We found evidence supporting this hypothesis. While elevated [CO2] stimulated photosynthesis in L. sylvatica mainly in the peak of the growing season (by 55%-57% in July and August), even at low light intensities (50 µmol m-2 s-1), stimulatory effect of [CO2] in C. arundinacea was found mainly under high light intensities (200 µmol m-2 s-1) at the beginning of the growing season (increase by 171% in May) and gradually declined during the season. Elevated [CO2] also substantially stimulated leaf mass area and root-to-shoot ratio in L. sylvatica, while only insignificant increases were observed in C. arundinacea.Our physiological and morphological analyses indicate that understorey species, differing in shade-tolerance, under elevated [CO2] exploit distinct niches in light environment given by the dynamics of the tree canopy.
- Klíčová slova
- Calamagrostis arundinacea, Luzula sylvatica, ecological niche, glass domes, light environment, manipulation experiment, seasonal dynamics,
- Publikační typ
- časopisecké články MeSH