Most cited article - PubMed ID 25877583
Electron-impact vibrational excitation of cyclopropane
We present a general two-dimensional model of conical intersection between metastable states that are vibronically coupled not only directly but also indirectly through a virtual electron in the autodetachment continuum. This model is used as a test ground for the design and comparison of iterative solvers for resonance dynamics in low-energy electron-molecule collisions. Two Krylov-subspace methods with various preconditioning schemes are compared. To demonstrate the applicability of the proposed methods on even larger models, we also test the performance of one of the methods on a recent model of vibrational excitation of CO2 by electron impact based on three vibronically coupled discrete states in continuum (Renner-Teller doublet of shape resonances coupled to a sigma virtual state) including four vibrational degrees of freedom. Two-dimensional electron energy-loss spectra resulting from electron-molecule scattering within the models are briefly discussed.
- Publication type
- Journal Article MeSH
We investigate electron attachment to large ammonia clusters doped with a single benzene (Bz) molecule (NH3)N·Bz, N̄ ≈ 320. Negatively charged clusters are probed by mass spectrometry, and the energy-dependent ion yields are derived from mass spectra measured at different electron energies. The ion efficiency curves of pure ammonia clusters exhibit two maxima. At around 6 eV, (NH3)n-1NH2- ions are produced via dissociative electron attachment (DEA) to NH3 molecules. (NH3)n- ions produced at this energy are formed by DEA followed by fragment caging. At low energies around 1.3 eV, only (NH3)n- ions are formed for cluster sizes n ≥ 35 that correspond to solvated electrons in ammonia clusters. The doped (NH3)n·Bz- cluster ions exhibit essentially the same energy dependence. The (NH3)n·Bz- ions are metastable and evaporate NH3 molecule(s), while pure (NH3)n- ions are stable. The lifetime for NH3 molecule evaporation from the Bz-doped clusters was estimated as τ ≈ 18 μs. We interpret the metastability of the doped clusters by the charge localization on a Bz- ion solvated in the ammonia, which is accompanied by an energy release leading to the evaporation of NH3 molecule(s).
- Publication type
- Journal Article MeSH