Solving Vibronic Dynamics in Electron Continuum

. 2024 Apr 09 ; 20 (7) : 2696-2710. [epub] 20240207

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38323899

We present a general two-dimensional model of conical intersection between metastable states that are vibronically coupled not only directly but also indirectly through a virtual electron in the autodetachment continuum. This model is used as a test ground for the design and comparison of iterative solvers for resonance dynamics in low-energy electron-molecule collisions. Two Krylov-subspace methods with various preconditioning schemes are compared. To demonstrate the applicability of the proposed methods on even larger models, we also test the performance of one of the methods on a recent model of vibrational excitation of CO2 by electron impact based on three vibronically coupled discrete states in continuum (Renner-Teller doublet of shape resonances coupled to a sigma virtual state) including four vibrational degrees of freedom. Two-dimensional electron energy-loss spectra resulting from electron-molecule scattering within the models are briefly discussed.

Zobrazit více v PubMed

Bardsley J. N.; Mandl F. Resonant scattering of electrons by molecules. Rep. Prog. Phys. 1968, 31, 471–531. 10.1088/0034-4885/31/2/302. DOI

Lane N. F. The theory of electron-molecule collisions. Rev. Mod. Phys. 1980, 52, 29–119. 10.1103/RevModPhys.52.29. DOI

Allan M. Study of triplet-states and short-lived negative-ions by means of electron-impact spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1989, 48, 219–351. 10.1016/0368-2048(89)80018-0. DOI

Domcke W. Theory of resonance and threshold effects in electron-molecule collisions: The projection-operator approach. Phys. Rep. 1991, 208, 97–188. 10.1016/0370-1573(91)90125-6. DOI

Hotop H.; Ruf M. W.; Allan M.; Fabrikant I. I. Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters. Adv. At., Mol., Opt. Phys. 2003, 49, 85–216. 10.1016/S1049-250X(03)80004-6. DOI

Schulz G. J. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 1973, 45, 423–486. 10.1103/RevModPhys.45.423. DOI

Ptasińska S.; Denifl S.; Mróz B.; Probst M.; Grill V.; Illenberger E.; Scheier P.; Märk T. D. Bond selective dissociative electron attachment to thymine. J. Chem. Phys. 2005, 123, 12430210.1063/1.2035592. PubMed DOI

Ibănescu B. C.; Allan M. Selective cleavage of the C-O bonds in alcohols and asymmetric ethers by dissociative electron attachment. Phys. Chem. Chem. Phys. 2009, 11, 7640–7648. 10.1039/b904945b. PubMed DOI

Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J. Recent progress in dissociative electron attachment: From diatomics to biomolecules. Adv. At., Mol., Opt. Phys. 2017, 66, 545–657. 10.1016/bs.aamop.2017.02.002. DOI

Rescigno T. N.; Isaacs W. A.; Orel A. E.; Meyer H.-D.; McCurdy C. W. Theoretical study of resonant vibrational excitation of CO2 by electron impact. Phys. Rev. A 2002, 65, 03271610.1103/PhysRevA.65.032716. DOI

McCurdy C. W.; Isaacs W. A.; Meyer H.-D.; Rescigno T. N. Resonant vibrational excitation of CO2 by electron impact: Nuclear dynamics on the coupled components of the 2Πu resonance. Phys. Rev. A 2003, 67, 04270810.1103/PhysRevA.67.042708. DOI

Rescigno T. N.; Trevisan C. S.; Orel A. E. Dynamics of low-energy electron attachment to formic acid. Phys. Rev. Lett. 2006, 96, 21320110.1103/PhysRevLett.96.213201. PubMed DOI

Gallup G. A.; Burrow P. D.; Fabrikant I. I. Electron-induced bond breaking at low energies in HCOOH and glycine: The role of very short-lived σ* anion states. Phys. Rev. A 2009, 79, 04270110.1103/PhysRevA.79.042701. DOI

Čurík R.; Čárský P.; Allan M. Vibrational excitation of methane by slow electrons revisited: Theoretical and experimental study. J. Phys. B 2008, 41, 11520310.1088/0953-4075/41/11/115203. DOI

Čurík R.; Paidarová I.; Allan M.; Čárský P. Joint experimental and theoretical study on vibrational excitation cross sections for electron collisions with diacetylene. J. Phys. Chem. A 2014, 118, 9734–9744. 10.1021/jp5073186. PubMed DOI

Nag P.; Čurík R.; Tarana M.; Polášek M.; Ehara M.; Sommerfeld T.; Fedor J. Resonant states in cyanogen NCCN. Phys. Chem. Chem. Phys. 2020, 22, 23141–23147. 10.1039/D0CP03333B. PubMed DOI

Anstöter C. S.; Mensa-Bonsu G.; Nag P.; Ranković M.; Ragesh Kumar T. P.; Boichenko A. N.; Bochenkova A. V.; Fedor J.; Verlet J. R. R. Mode-specific vibrational autodetachment following excitation of electronic resonances by electrons and photons. Phys. Rev. Lett. 2020, 124, 20340110.1103/PhysRevLett.124.203401. PubMed DOI

Gallup G. A. Selection rules for vibrational energy loss by resonant electron impact in polyatomic molecules. Phys. Rev. A 1986, 34, 2746–2750. 10.1103/PhysRevA.34.2746. PubMed DOI

Gallup G. A. Symmetry selection rules for vibrational excitation by resonant electron impact and a unified treatment of vibronic coupling between resonances and to the continuum: A complete symmetry analysis of vibrational excitation in benzene. J. Chem. Phys. 1993, 99, 827–835. 10.1063/1.465346. DOI

Čurík R.; Čárský P.; Allan M. Electron-impact vibrational excitation of cyclopropane. J. Chem. Phys. 2015, 142, 144312.10.1063/1.4917304. PubMed DOI

Marion R.; Čížek M.; Urbain X. Autodetachment spectroscopy of metastable D2– and HD–. Phys. Rev. A 2023, 107, 05280810.1103/PhysRevA.107.052808. DOI

Ranković M.; Nag P.; Anstöter C. S.; Mensa-Bonsu G.; Ragesh Kumar T. P.; Verlet J. R. R.; Fedor J. Resonances in nitrobenzene probed by the electron attachment to neutral and by the photodetachment from anion. J. Chem. Phys. 2022, 157, 06430210.1063/5.0101358. PubMed DOI

Reddish T.; Currell F.; Comer J. Studies of the 2 eV shape resonance in N2 using a two-dimensional scanning technique. J. Phys. E: Sci. Instrum. 1988, 21, 203–207. 10.1088/0022-3735/21/2/016. DOI

Currell F.; Comer J. Observation of friction in the nuclear-dynamics of CO2– near the equilibrium geometry of the negative-ion. Phys. Rev. Lett. 1995, 74, 1319–1322. 10.1103/PhysRevLett.74.1319. PubMed DOI

Regeta K.; Allan M. Autodetachment dynamics of acrylonitrile anion revealed by two-dimensional electron impact spectra. Phys. Rev. Lett. 2013, 110, 20320110.1103/PhysRevLett.110.203201. PubMed DOI

Regeta K.; Allan M. Two-dimensional spectra of electron collisions with acrylonitrille and methacrylonitrile reveal nuclear dynamics. J. Chem. Phys. 2015, 142, 18430710.1063/1.4921204. PubMed DOI

Allan M.; Regeta K.; Gorfinkiel J. D.; Mašín Z.; Grimme S.; Bannwarth C. Recent research directions in Fribourg: Nuclear dynamics in resonances revealed by 2-dimensional EEL spectra, electron collisions with ionic liquids and electronic excitation of pyrimidine. Eur. Phys. J. D 2016, 70, 12310.1140/epjd/e2016-70153-2. DOI

Allan M.; Lacko M.; Papp P.; Matejčík Š.; Zlatar M.; Fabrikant I. I.; Kočišek J.; Fedor J. Dissociative electron attachment and electronic excitation in Fe(CO)5. Phys. Chem. Chem. Phys. 2018, 20, 1169210.1039/C8CP01387J. PubMed DOI

Ranković M.; Nag P.; Zawadzki M.; Ballauf L.; Žabka J.; Polášek M.; Kočišek J.; Fedor J. Electron collisions with cyanoacetylene HC3N: Vibrational excitation and dissociative electron attachment. Phys. Rev. A 2018, 98, 05270810.1103/PhysRevA.98.052708. DOI

Ranković M.; Ragesh Kumar T. P.; Nag P.; Kočišek J.; Fedor J. Temporary anions of the dielectric gas C3F7CN and their decay channels. J. Chem. Phys. 2020, 152, 24430410.1063/5.0008897. PubMed DOI

Med J.; Sršeň Š.; Slavíček P.; Domaracka A.; Indrajith S.; Rousseau P.; Fárník M.; Fedor J.; Kočišek J. Vibrationally mediated stabilization of electrons in nonpolar matter. J. Phys. Chem. Lett. 2020, 11, 2482–2489. 10.1021/acs.jpclett.0c00278. PubMed DOI

Ragesh Kumar T. P.; Kočišek J.; Bravaya K.; Fedor J. Electron-induced vibrational excitation and dissociative electron attachment in methyl formate. Phys. Chem. Chem. Phys. 2020, 22, 518–524. 10.1039/C9CP05165A. PubMed DOI

Estrada H.; Cederbaum L. S.; Domcke W. Vibronic coupling of short-lived electronic states. J. Chem. Phys. 1986, 84, 152–169. 10.1063/1.450165. DOI

Dvořák J.; Ranković M.; Houfek K.; Nag P.; Čurík R.; Fedor J.; Čížek M. Vibronic coupling through the continuum in the e+CO2 system. Phys. Rev. Lett. 2022, 129, 01340110.1103/PhysRevLett.129.013401. PubMed DOI

Dvořák J.; Houfek K.; Čížek M. Vibrational excitation in the e+CO2 system: Nonlocal model of ΣΠ vibronic coupling through the continuum. Phys. Rev. A 2022, 105, 06282110.1103/PhysRevA.105.062821. PubMed DOI

Dvořák J.; Ranković M.; Houfek K.; Nag P.; Čurík R.; Fedor J.; Čížek M. Vibrational excitation in the e+CO2 system: Analysis of two-dimensional energy-loss spectrum. Phys. Rev. A 2022, 106, 06280710.1103/PhysRevA.106.062807. DOI

Gianturco F. A.; Jain A. The theory of electron scattering from polyatomic molecules. Phys. Rep. 1986, 143, 347–425. 10.1016/0370-1573(86)90125-0. DOI

Čížek M.; Houfek K.. Low-energy Electron Scattering from Molecules, Biomolecules and Surfaces; Čársky P.; Čurík R., Eds.; CRC Press, 2012; Chapter 4, pp 91–125.

Scarlett L. H.; Bray I.; Fursa V. D. Electronic and vibrational close-coupling method for resonant electron-molecule scattering. Phys. Rev. Lett. 2021, 127, 22340110.1103/PhysRevLett.127.223401. PubMed DOI

Curik R.; Čárský P. Vibrationally inelastic electron scattering on polyatomic molecules by the discrete momentum representation (DMR) method. J. Phys. B 2003, 36, 2165–2177. 10.1088/0953-4075/36/11/303. DOI

Kossoski F.; Barbatti M. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem. Sci. 2020, 11, 9827–9835. 10.1039/D0SC04197A. PubMed DOI PMC

Ambalampitiya H. B.; Fabrikant I. I. Nonlocal complex potential theory of dissociative electron attachment: Inclusion of two vibrational modes. Phys. Rev. A 2020, 102, 02280210.1103/PhysRevA.102.022802. DOI

Feuerbacher S.; Sommerfeld T.; Cederbaum L. S. Intersections of potential energy surfaces of short-lived states: The complex analogue of conical intersections. J. Chem. Phys. 2004, 120, 3201–3214. 10.1063/1.1640615. PubMed DOI

Feuerbacher S.; Cederbaum L. S. Jahn-Teller effect for short-lived states: Study of the complex potential energy surfaces. J. Chem. Phys. 2004, 121, 5–15. 10.1063/1.1755651. PubMed DOI

Feshbach H. A Unified Theory of Nuclear Reactions II. Ann. Phys. 1962, 19, 287–313. 10.1016/0003-4916(62)90221-X. DOI

Mies F. H. Configuration interaction theory. Effect of overlapping resonances. Phys. Rev. 1968, 175, 164–175. 10.1103/PhysRev.175.164. DOI

Berman M.; Estrada H.; Cederbaum L. S.; Domcke W. Nuclear dynamics in resonant electron-molecule scattering beyond the local approximation: The 2.3-eV shape resonance in N2. Phys. Rev. A 1983, 28, 1363–1381. 10.1103/PhysRevA.28.1363. DOI

Ragesh Kumar T. P.; Nag P.; Ranković M.; Luxford T. F. M.; Kočišek J.; Mašín Z.; Fedor J. Distant symmetry control in electron-induced bond cleavage. J. Phys. Chem. Lett. 2022, 13, 11136–11142. 10.1021/acs.jpclett.2c03096. PubMed DOI

Hazi A. U. Effects of resonance-resonance coupling on dissociative electron attachment. J. Phys. B 1983, 16, L29–L34. 10.1088/0022-3700/16/2/004. DOI

Pieksma M.; Čížek M.; Thomsen J. W.; van der Straten P.; Niehaus A. Energy distributions of He+ and He2+ ions formed in ultracold He(23S1+He(23P2) collisions. Phys. Rev. A 2002, 66, 02270310.1103/PhysRevA.66.022703. DOI

Royal J.; Larson Å.; Orel A. E. Effect of couplings in the resonance continuum. J. Phys. B 2004, 37, 3075–3083. 10.1088/0953-4075/37/15/006. DOI

Allan M. Talk.Telluride workshop, 2019. https://homeweb.unifr.ch/allanm/pub/ma/Lectures.html (unpublished).

Saad Y.Iterative Methods for Sparse Linear Systems; Society for Industrial and Applied Mathematics, Philadelphia, 2003.

Liesen J.; Strakoš Z.. Krylov Subspace Methods: Principles and Analysis; Oxford University Press, 2013.

Saad Y.; Schultz M. H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. on Sci. Stat. Comput. 1986, 7, 856–869. 10.1137/0907058. DOI

Faber V.; Manteuffel T. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method. SIAM J. Num. Anal. 1984, 21, 352–362. 10.1137/0721026. DOI

van der Vorst H. A.; Melissen J. A Petrov-Galerkin type method for solving Ax = b, where A is symmetric complex. IEEE Trans. Magn. 1990, 26, 706–708. 10.1109/20.106415. DOI

Šarmanová M.Iterative calculation of vibrational dynamics in electron scattering from molecule. Bcl thesis, Charles University: Prague, http://hdl.handle.net/20.500.11956/121270, 2020.

Šarmanová M.Mathematical modeling of vibrational dynamics in electron scattering from molecule. MS thesis, Charles University, Prague, http://hdl.handle.net/20.500.11956/175327, 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...