Most cited article - PubMed ID 25900417
Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): from a forest origin to broad ecological expansion across Africa
Untangling the factors of morphological evolution has long held a central role in the study of evolutionary biology. Extant speciose clades that have only recently diverged are ideal study subjects, as they allow the examination of rapid morphological variation in a phylogenetic context, providing insights into a clade's evolution. Here, we focus on skull morphological variability in a widely distributed shrew species complex, the Crocidura poensis species complex. The relative effects of taxonomy, size, geography, climate and habitat on skull form were tested, as well as the presence of a phylogenetic signal. Taxonomy was the best predictor of skull size and shape, but surprisingly both size and shape exhibited no significant phylogenetic signal. This paper describes one of the few cases within a mammal clade where morphological evolution does not match the phylogeny. The second strongest predictor for shape variation was size, emphasizing that allometry can represent an easily accessed source of morphological variability within complexes of cryptic species. Taking into account species relatedness, habitat preferences, geographical distribution and differences in skull form, our results lean in favor of a parapatric speciation model within this complex of species, where divergence occurred along an ecological gradient, rather than a geographic barrier.
BACKGROUND: Spiny mice of the genus Acomys are distributed mainly in dry open habitats in Africa and the Middle East, and they are widely used as model taxa for various biological disciplines (e.g. ecology, physiology and evolutionary biology). Despite their importance, large distribution and abundance in local communities, the phylogeny and the species limits in the genus are poorly resolved, and this is especially true for sub-Saharan taxa. The main aims of this study are (1) to reconstruct phylogenetic relationships of Acomys based on the largest available multilocus dataset (700 genotyped individuals from 282 localities), (2) to identify the main biogeographical divides in the distribution of Acomys diversity in dry open habitats in Afro-Arabia, (3) to reconstruct the historical biogeography of the genus, and finally (4) to estimate the species richness of the genus by application of the phylogenetic species concept. RESULTS: The multilocus phylogeny based on four genetic markers shows presence of five major groups of Acomys called here subspinosus, spinosissimus, russatus, wilsoni and cahirinus groups. Three of these major groups (spinosissimus, wilsoni and cahirinus) are further sub-structured to phylogenetic lineages with predominantly parapatric distributions. Combination of alternative species delimitation methods suggests the existence of 26 molecular operational taxonomic units (MOTUs), potentially corresponding to separate species. The highest genetic diversity was found in Eastern Africa. The origin of the genus Acomys is dated to late Miocene (ca. 8.7 Ma), when the first split occurred between spiny mice of eastern (Somali-Masai) and south-eastern (Zambezian) savannas. Further diversification, mostly in Plio-Pleistocene, and the current distribution of Acomys were influenced by the interplay of global climatic factors (e.g., Messinian salinity crisis, intensification of Northern Hemisphere glaciation) with local geomorphology (mountain chains, aridity belts, water bodies). Combination of divergence dating, species distribution modelling and historical biogeography analysis suggests repeated "out-of-East-Africa" dispersal events into western Africa, the Mediterranean region and Arabia. CONCLUSIONS: The genus Acomys is very suitable model for historical phylogeographic and biogeographic reconstructions of dry non-forested environments in Afro-Arabia. We provide the most thorough phylogenetic reconstruction of the genus and identify major factors that influenced its evolutionary history since the late Miocene. We also highlight the urgent need of integrative taxonomic revision of east African taxa.
- Keywords
- Acomys, Africa, Arabia, Biogeography, Plio-Pleistocene, Sahara, Savanna, Somali-Masai, Zambezian savanna,
- MeSH
- Biological Evolution MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Phylogeography * MeSH
- DNA, Mitochondrial chemistry genetics MeSH
- Murinae classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa MeSH
- Arabia MeSH
- Africa, Northern MeSH
- Middle East MeSH
- Africa, Eastern MeSH
- Africa, Western MeSH
- Names of Substances
- DNA, Mitochondrial MeSH