Most cited article - PubMed ID 26304779
Synthesis of strigolactones, a strategic account
BACKGROUND: Strigolactones represent the most recently described group of plant hormones involved in many aspects of plant growth regulation. Simultaneously, root exuded strigolactones mediate rhizosphere signaling towards beneficial arbuscular mycorrhizal fungi, but also attract parasitic plants. The seed germination of parasitic plants induced by host strigolactones leads to serious agricultural problems worldwide. More insight in these signaling molecules is hampered by their extremely low concentrations in complex soil and plant tissue matrices, as well as their instability. So far, the combination of tailored isolation-that would replace current unspecific, time-consuming and labour-intensive processing of large samples-and a highly sensitive method for the simultaneous profiling of a broad spectrum of strigolactones has not been reported. RESULTS: Depending on the sample matrix, two different strategies for the rapid extraction of the seven structurally similar strigolactones and highly efficient single-step pre-concentration on polymeric RP SPE sorbent were developed and validated. Compared to conventional methods, controlled temperature during the extraction and the addition of an organic modifier (acetonitrile, acetone) to the extraction solvent helped to tailor strigolactone isolation from low initial amounts of root tissue (150 mg fresh weight, FW) and root exudate (20 ml), which improved both strigolactone stability and sample purity. We have designed an efficient UHPLC separation with sensitive MS/MS detection for simultaneous analysis of seven natural strigolactones including their biosynthetic precursors-carlactone and carlactonoic acid. In combination with the optimized UHPLC-MS/MS method, attomolar detection limits were achieved. The new method allowed successful profiling of seven strigolactones in small exudate and root tissue samples of four different agriculturally important plant species-sorghum, rice, pea and tomato. CONCLUSION: The established method provides efficient strigolactone extraction with aqueous mixtures of less nucleophilic organic solvents from small root tissue and root exudate samples, in combination with rapid single-step pre-concentration. This method improves strigolactone stability and eliminates the co-extraction and signal of matrix-associated contaminants during the final UHPLC-MS/MS analysis with an electrospray interface, which dramatically increases the overall sensitivity of the analysis. We show that the method can be applied to a variety of plant species.
- Keywords
- Phosphate starvation, Phytohormones, Quantitative analysis, Solid phase extraction (SPE), Strigolactones, UHPLC–MS/MS,
- Publication type
- Journal Article MeSH
BACKGROUND: Strigolactones (SLs) have a vast number of ecological implications because of the broad spectrum of their biological activities. Unfortunately, the limited availability of SLs restricts their applicability for the benefit of humanity and renders synthesis the only option for their production. However, the structural complexity of SLs impedes their economical synthesis, which is unfeasible on a large scale. Synthesis of SL analogues and mimics with a simpler structure, but with retention of bioactivity, is the solution to this problem. RESULTS: Here, we present eight new hybrid-type SL analogues derived from auxin, synthesized via coupling of auxin ester [ethyl 2-(1H-indol-3-yl)acetate] and of ethyl 2-phenylacetate with four D-rings (mono-, two di- and trimethylated). The new hybrid-type SL analogues were bioassayed to assess the germination activity of seeds of the parasitic weeds Striga hermonthica, Orobanche minor and Phelipanche ramosa using the classical method of counting germinated seeds and a colorimetric method. The bioassays revealed that analogues with a natural monomethylated D-ring had appreciable to good activity towards the three species and were the most active derivatives. By contrast, derivatives with the trimethylated D-ring showed no activity. The dimethylated derivatives (2,4-dimethyl and 3,4-dimethyl) were slightly active, especially towards P. ramosa. CONCLUSIONS: New hybrid-type analogues derived from auxins have been prepared. These analogues may be attractive as potential suicidal germination agents for parasitic weed control because of their ease of preparation and relevant bioactivity. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
- Keywords
- auxins, strigolactone analogues, strigolactones, suicidal germination,
- MeSH
- Germination drug effects MeSH
- Weed Control methods MeSH
- Indoleacetic Acids chemistry MeSH
- Lactones chemical synthesis MeSH
- Orobanchaceae drug effects physiology MeSH
- Orobanche drug effects physiology MeSH
- Plant Weeds drug effects physiology MeSH
- Seeds drug effects physiology MeSH
- Striga drug effects physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Indoleacetic Acids MeSH
- Lactones MeSH