Nejvíce citovaný článek - PubMed ID 26307837
The unique potential of fullerene C60 for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C60 + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C60 + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C60 and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.
- MeSH
- fullereny * chemie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- oxid dusnatý MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fullereny * MeSH
- oxid dusnatý MeSH
Doxorubicin (DOX) is one of the most frequently used anticancer drugs in breast cancer treatment. However, clinical applications of DOX are restricted, largely due to the fact that its action disturbs the pro/antioxidant balance in both cancerous and non-cancerous cells. The aim of this study was to investigate the influence of fullerene (C60) in cell treatment by DOX on the proliferation of human breast cancer cells (MCF-7), concentration of metallothionein (MT) and superoxide dismutase (SOD), and SOD activity in these cells. The use of C60 in complexes with DOX causes a change in the level of cell proliferation of about 5% more than when caused by DOX alone (from 60⁻65% to 70%). The use of C60 as a DOX nanotransporter reduced the MT level increase induced by DOX. C60 alone caused an increase of SOD1 concentration. On the other hand, it led to a decrease of SOD activity. C60 in complex with DOX caused a decrease of the DOX-induced SOD activity level. Exposure of MCF-7 cells to DOX-C60 complexes results in a decrease in viable cells and may become a new therapeutic approach to breast cancer. The effects of C60 in complexes with DOX on MCF-7 cells included a decreased enzymatic (SOD activity) and nonenzymatic (MT) antioxidant status, thus indicating their prooxidant role in MCF-7 cells.
- Klíčová slova
- breast tumors, doxorubicin, drug delivery systems, fullerene, nanoparticles, metallothionein, superoxide dismutase,
- MeSH
- doxorubicin farmakologie MeSH
- fullereny chemie MeSH
- lidé MeSH
- metalothionein metabolismus MeSH
- MFC-7 buňky MeSH
- nanočástice chemie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- superoxiddismutasa 1 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- doxorubicin MeSH
- fullereny MeSH
- metalothionein MeSH
- protinádorové látky MeSH
- SOD1 protein, human MeSH Prohlížeč
- superoxiddismutasa 1 MeSH