Most cited article - PubMed ID 26492940
Formation of protective deposits by anti-erosive toothpastes-A microscopic study on enamel with artificial defects
Bisphenol A (BPA)-based monomers are commonly contained in dental resin-based materials. As BPA is an endocrine disruptor, its long-term release from restorative composites and resin-modified glass ionomers (RM-GICs) under two polymerization conditions was measured in this study. Specimens of two conventional composites containing BPA-based monomers, two "BPA-free" composites, and two RM-GICs were polymerized from one side for 20 s at 1300 mW/cm2 or for 5 s at 3000 mW/cm2. The amounts of BPA released in artificial saliva and methanol after 1, 4, 9, 16, 35, 65, 130, and 260 days were measured using liquid chromatography-tandem mass spectrometry. The highest amounts of BPA were released from conventional composites, followed by RM-GICs, while the least was released from "BPA-free" composites. Amounts of released BPA were significantly higher in methanol and decreased gradually after the first day. Fast polymerization (5 s at 3000 mW/cm2) resulted in a significantly higher release of BPA after 1 day, but the effect of polymerization conditions was not significant overall. In conclusion, fast polymerization increased the initial release of BPA, but the released amounts were significantly lower than the current tolerable daily intake (4 μg/kg body weight/day) even in methanol, representing the worst-case scenario of BPA release.
- Keywords
- Bis-GMA, bisphenol A, glass ionomer cements, light-curing, liquid chromatography, mass spectrometry, resin composite,
- Publication type
- Journal Article MeSH
Polycarbonates are polymers of bisphenol A (BPA), a well-known endocrine disruptor. This study evaluated the release of BPA from polycarbonate crowns that were (1) milled from Temp Premium Flexible (ZPF, Zirkonzahn, Italy) or Tizian Blank Polycarbonate (TBP, Schütz Dental, Germany), or (2) 3D-printed (Makrolon 2805, Covestro, Germany). Commercial prefabricated polycarbonate crowns (3M, USA) and milled poly(methyl methacrylate) (PMMA) crowns (Temp Basic, Zirkonzahn, Italy) were included for comparison. The crowns were stored at 37 °C in artificial saliva (AS) or methanol, which represented the worst-case scenario of BPA release. Extracts were collected after 1 day, 1 week, 1 month and 3 months. BPA concentrations were measured using liquid chromatography-tandem mass spectrometry. The amounts of released BPA were expressed in micrograms per gram of material (μg/g). After 1 day, the highest amounts of BPA were measured from milled polycarbonates, TBP (methanol: 32.2 ± 3.8 μg/g, AS: 7.1 ± 0.9 μg/g) and ZPF (methanol 22.8 ± 7.7 μg/g, AS: 0.3 ± 0.03 μg/g), followed by 3D-printed crowns (methanol: 11.1 ± 2.3 μg/g, AS: 0.1 ± 0.1 μg/g) and prefabricated crowns (methanol: 8.0 ± 1.6 μg/g, AS: 0.07 ± 0.02 μg/g). Between 1 week and 3 months, the average daily release of BPA in methanol and AS decreased below 2 μg/g and 0.6 μg/g, respectively. No BPA was released from PMMA in AS, and the cumulative amount released in methanol was 0.2 ± 0.06 μg/g. In conclusion, polycarbonates could be a relevant source of BPA, but the current tolerable daily intake of BPA (4 μg/kg body weight) should not be exceeded.
- Keywords
- 3D-printing, bisphenol A, chromatography, dental prosthesis, mass spectrometry, milling, polycarbonate, splint,
- Publication type
- Journal Article MeSH