Most cited article - PubMed ID 26580365
Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR
Despite substantial evidence of short Au⋅⋅⋅H-X contacts derived from a number of X-ray structures of AuI compounds, the nature of AuI ⋅⋅⋅H bonding in these systems has not been clearly understood. Herein, we present the first spectroscopic evidence for an intramolecular AuI ⋅⋅⋅H+ -N hydrogen bond in a [Cl-Au-L]+ complex, where L is a protonated N-heterocyclic carbene. The complex was isolated in the gas phase and characterized with helium-tagging infrared photodissociation (IRPD) spectra, in which H+ -N-mode-derived bands evidence the intramolecular AuI ⋅⋅⋅H+ -N bond. Quantum chemical calculations reproduce the experimental IRPD spectra and allow to characterize the intramolecular Au⋅⋅⋅H+ -N bonding with a short rAu⋅⋅⋅H distance of 2.17 Å and an interaction energy of approximately -10 kcal mol-1 . Various theoretical descriptors of chemical bonding calculated for the Au⋅⋅⋅H+ -N interaction provide strong evidence for a hydrogen bond of moderate strength.
- Keywords
- anharmonic spectra, gold(I) carbenes, hydrogen bonding to gold, infrared photodissociation spectroscopy, quantum chemical calculations,
- Publication type
- Journal Article MeSH