Nejvíce citovaný článek - PubMed ID 16955487
We investigated the effect of uniaxial strain on the electrical properties of few-layer ZrSe3 devices under compressive and tensile strains applied up to ±0.62% along different crystal directions. We observed that the piezoresponse, the change in resistance upon application of strain, of ZrSe3 strongly depends on both the direction in which electrical transport occurs and the direction in which uniaxial strain is applied. Notably, a remarkably high anisotropy in the gauge factor for a device with the transport occurring along the b-axis of ZrSe3 with GF = 68 when the strain is applied along the b-axis was obtained, and GF = 4 was achieved when strain is applied along the a-axis. This leads to an anisotropy ratio of almost 90%. Devices whose transport occurs along the a-axis, however, show much lower anisotropy in gauge factors when strain is applied along different directions, leading to an anisotropy ratio of 50%. Furthermore, ab initio calculations of strain dependent change in resistance showed the same trends of the anisotropy ratio as obtained from experimental results for both electrical transport and strain application directions, which were correlated with bandgap changes and different orbital contributions.
- Publikační typ
- časopisecké články MeSH
A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol-1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases.
- Klíčová slova
- Cambridge Structural Database, blind test, crystal structure prediction, lattice energy, polymorphism,
- Publikační typ
- časopisecké články MeSH
Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.
- MeSH
- glykosaminoglykany * chemie MeSH
- kyseliny sulfonové chemie MeSH
- simulace molekulární dynamiky * MeSH
- sírany * chemie MeSH
- statická elektřina * MeSH
- vápník chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykosaminoglykany * MeSH
- kyseliny sulfonové MeSH
- sírany * MeSH
- sulfamic acid MeSH Prohlížeč
- vápník MeSH
Modification of CeO2 (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeOx/CeO2(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations. Our results show that under ultrahigh vacuum conditions, Fe deposition leads to the formation of small FeOx clusters on the ceria surface. Subsequent annealing results in the growth of large amorphous FeOx particles and a 2D FeOx layer. Annealing in an oxygen-rich atmosphere further oxidizes iron up to the Fe3+ state and improves the crystallinity of both the 2D layer and the 3D particles. Our DFT calculations indicate that the 2D FeOx layer interacts strongly with the ceria surface, exhibiting structural corrugations and transferred electrons between Fe2+/Fe3+ and Ce4+/Ce3+ redox pairs. The novel 2D FeOx/CeO2(111) phase may explain the enhancement of the catalytic properties of CeO2 by iron. Moreover, the corrugated 2D FeOx layer can serve as a template for the ordered nucleation of other catalytically active metals, in which the redox properties of the 2D FeOx/CeO2(111) system are exploited to modulate the charge of the supported metals.
- Klíčová slova
- 2D layer, CeO2, DFT, STM, XPS, catalysis, ceria, iron oxide,
- Publikační typ
- časopisecké články MeSH
Surface terminations profoundly influence the intrinsic properties of MXenes, but existing terminations are limited to monoatomic layers or simple groups, showing disordered arrangements and inferior stability. Here we present the synthesis of MXenes with triatomic-layer borate polyanion terminations (OBO terminations) through a flux-assisted eutectic molten etching approach. During the synthesis, Lewis acidic salts act as the etching agent to obtain the MXene backbone, while borax generates BO2- species, which cap the MXene surface with an O-B-O configuration. In contrast to conventional chlorine/oxygen-terminated Nb2C with localized charge transport, OBO-terminated Nb2C features band transport described by the Drude model, exhibiting a 15-fold increase in electrical conductivity and a 10-fold improvement in charge mobility at the d.c. limit. This transition is attributed to surface ordering that effectively mitigates charge carrier backscattering and trapping. Additionally, OBO terminations provide Ti3C2 MXene with substantially enriched Li+-hosting sites and thereby a large charge-storage capacity of 420 mAh g-1. Our findings illustrate the potential of intricate termination configurations in MXenes and their applications for (opto)electronics and energy storage.
- Publikační typ
- časopisecké články MeSH
Liquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C). We combine core-level photoelectron spectroscopy and ab initio calculations, allowing us to site-specifically explore the acid-base chemistry of the biomolecule. For the first time, we demonstrate the capability of the method to simultaneously assign two deprotonation sites within the molecule. We show that a large change in chemical shift appears even for atoms distant several bonds from the chemically modified group. Furthermore, we present a highly efficient and accurate computational protocol based on a single structure using the maximum-overlap method for modeling core-level photoelectron spectra in aqueous environments. This work poses a broader question: to what extent can LJ-PES complement established structural techniques such as nuclear magnetic resonance? Answering this question is highly relevant in view of the large number of incorrect molecular structures published.
- Publikační typ
- časopisecké články MeSH
Dynamical refinement is a well established method for refining crystal structures against 3D electron diffraction (ED) data and its benefits have been discussed in the literature [Palatinus, Petříček & Corrêa, (2015). Acta Cryst. A71, 235-244; Palatinus, Corrêa et al. (2015). Acta Cryst. B71, 740-751]. However, until now, dynamical refinements have only been conducted using the independent atom model (IAM). Recent research has shown that a more accurate description can be achieved by applying the transferable aspherical atom model (TAAM), but this has been limited only to kinematical refinements [Gruza et al. (2020). Acta Cryst. A76, 92-109; Jha et al. (2021). J. Appl. Cryst. 54, 1234-1243]. In this study, we combine dynamical refinement with TAAM for the crystal structure of 1-methyluracil, using data from precession ED. Our results show that this approach improves the residual Fourier electrostatic potential and refinement figures of merit. Furthermore, it leads to systematic changes in the atomic displacement parameters of all atoms and the positions of hydrogen atoms. We found that the refinement results are sensitive to the parameters used in the TAAM modelling process. Though our results show that TAAM offers superior performance compared with IAM in all cases, they also show that TAAM parameters obtained by periodic DFT calculations on the refined structure are superior to the TAAM parameters from the UBDB/MATTS database. It appears that multipolar parameters transferred from the database may not be sufficiently accurate to provide a satisfactory description of all details of the electrostatic potential probed by the 3D ED experiment.
Neutron scattering and molecular dynamics studies were performed on a concentrated aqueous tetramethylammonium (TMA) chloride solution to gain insight into the hydration shell structure of TMA, which is relevant for understanding its behavior in biological contexts of, e.g., properties of phospholipid membrane headgroups or interactions between DNA and histones. Specifically, neutron diffraction with isotopic substitution experiments were performed on TMA and water hydrogens to extract the specific correlation between hydrogens in TMA (HTMA) and hydrogens in water (HW). Classical molecular dynamics simulations were performed to help interpret the experimental neutron scattering data. Comparison of the hydration structure and simulated neutron signals obtained with various force field flavors (e.g. overall charge, charge distribution, polarity of the CH bonds and geometry) allowed us to gain insight into how sensitive the TMA hydration structure is to such changes and how much the neutron signal can capture them. We show that certain aspects of the hydration, such as the correlation of the hydrogen on TMA to hydrogen on water, showed little dependence on the force field. In contrast, other correlations, such as the ion-ion interactions, showed more marked changes. Strikingly, the neutron scattering signal cannot discriminate between different hydration patterns. Finally, ab initio molecular dynamics was used to examine the three-dimensional hydration structure and thus to benchmark force field simulations. Overall, while neutron scattering has been previously successfully used to improve force fields, in the particular case of TMA we show that it has only limited value to fully determine the hydration structure, with other techniques such as ab initio MD being of a significant help.
- Publikační typ
- časopisecké články MeSH
Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.
- Klíčová slova
- CCSD(T), DFT, interaction energy, noncovalent interactions, supramolecular junctions,
- MeSH
- dimerizace MeSH
- elektronika * MeSH
- fyzikální jevy MeSH
- polymery MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery MeSH
The possibility to engineer (GeTe)m (Sb2 Te3 )n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)m (Sb2 Te3 )n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m (Sb2 Te3 )1 blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m (Sb2 Te3 )1 lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures.
- Klíčová slova
- 2D ferroelectrics, density functional theory calculations, molecular beam epitaxy, phase-change materials, van der Waals,
- Publikační typ
- časopisecké články MeSH