Determination of lattice parameters from 3D electron diffraction (3D ED) data measured in a transmission electron microscope is hampered by a number of effects that seriously limit the achievable accuracy. The distortion of the diffraction patterns by the optical elements of the microscope is often the most severe problem. A thorough analysis of a number of experimental datasets shows that, in addition to the well known distortions, namely barrel-pincushion, spiral and elliptical, an additional distortion, dubbed parabolic, may be observed in the data. In precession electron diffraction data, the parabolic distortion leads to excitation-error-dependent shift and splitting of reflections. All distortions except for the elliptical distortion can be determined together with lattice parameters from a single 3D ED data set. However, the parameters of the elliptical distortion cannot be determined uniquely due to correlations with the lattice parameters. They can be determined and corrected either by making use of the known Laue class of the crystal or by combining data from two or more crystals. The 3D ED data can yield lattice parameter ratios with an accuracy of about 0.1% and angles with an accuracy better than 0.03°.
- Keywords
- 3D electron diffraction, distortions, lattice parameters, parabolic distortion, precession electron diffraction,
- Publication type
- Journal Article MeSH
Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook reviews most important 3D electron diffraction applications for different kinds of samples and problematics, related with both materials and life sciences. Structure refinement including dynamical scattering is also briefly discussed.
- Publication type
- Journal Article MeSH
- Review MeSH
Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclodepsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclodepsipeptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enantiomorphs of beauveriolide I.
- Keywords
- 3D electron diffraction, Alzheimer's disease, absolute structure, crystal structure, natural product,
- MeSH
- Biological Products * MeSH
- Cordyceps * MeSH
- Electrons MeSH
- Crystallography, X-Ray MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biological Products * MeSH
Kaatialaite mineral Fe[AsO2(OH)2]5H2O from Jáchymov, Czech Republic forms white aggregates of needle-shaped crystals with micrometric size. Its structure at ambient temperature has already been reported but hydrogen atoms could not be identified from single-crystal X-ray diffraction. An analysis using 3D electron diffraction at low temperature brings to light the hydrogen positions and the existence of hydrogen disorder. At 100 K, kaatialaite is described in a monoclinic unit cell of a = 15.46, b = 19.996, c = 4.808 Å, β = 91.64° and V = 1485.64 Å3 with space group P21/n. The hydrogen sites were revealed after refinements both considering the dynamical effects and ignoring them. The possibility to access most of the hydrogen positions, including partially occupied ones among heavy atoms, from the kinematical refinement is due to the recent developments in the analysis of 3D electron data. The hydrogen bonding observed in kaatialaite provides examples of H2O configurations that have not been observed before in the structures of oxysalts with the presence of unusual inverse transformer H2O groups.
- Keywords
- 3D electron diffraction, disorder, ferric arsenate, hydrogen bonds, kaatialaite,
- Publication type
- Journal Article MeSH
Estimating the error in the merged reflection intensities requires a full understanding of all the possible sources of error arising from the measurements. Most diffraction-spot integration methods focus mainly on errors arising from counting statistics for the estimation of uncertainties associated with the reflection intensities. This treatment may be incomplete and partly inadequate. In an attempt to fully understand and identify all the contributions to these errors, three methods are examined for the correction of estimated errors of reflection intensities in electron diffraction data. For a direct comparison, the three methods are applied to a set of organic and inorganic test cases. It is demonstrated that applying the corrections of a specific model that include terms dependent on the original uncertainty and the largest intensity of the symmetry-related reflections improves the overall structure quality of the given data set and improves the final Rall factor. This error model is implemented in the data reduction software PETS2.
- Keywords
- data reduction, electron diffraction, error analysis, error modelling,
- Publication type
- Journal Article MeSH
Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) Å for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) Å for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.
- Keywords
- 3D difference pair distribution functions, 3D electron diffraction, 3D-ΔPDF, 3DED, single-crystal diffuse scattering,
- Publication type
- Journal Article MeSH
Conventional refinement strategies used for three-dimensional electron diffraction (3D ED) data disregard the bonding effects between the atoms in a molecule by assuming a pure spherical model called the Independent Atom model (IAM) and may lead to an inaccurate or biased structure. Here we show that it is possible to perform a refinement going beyond the IAM with electron diffraction data. We perform kappa refinement which models charge transfers between atoms while assuming a spherical model. We demonstrate the procedure by analysing five inorganic samples; quartz, natrolite, borane, lutecium aluminium garnet, and caesium lead bromide. Implementation of kappa refinement improved the structure model obtained over conventional IAM refinements and provided information on the ionisation of atoms. The results were validated against periodic DFT calculations. The work presents an extension of the conventional refinement of 3D ED data for a more accurate structure model which enables charge density information to be extracted.
- Publication type
- Journal Article MeSH
We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.
- Keywords
- 3D ED, MicroED, electron diffraction, microcrystal electron diffraction,
- MeSH
- Cryoelectron Microscopy * MeSH
- Workflow MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
Continuous-rotation 3D electron diffraction methods are increasingly popular for the structure analysis of very small organic molecular crystals and crystalline inorganic materials. Dynamical diffraction effects cause non-linear deviations from kinematical intensities that present issues in structure analysis. Here, a method for structure analysis of continuous-rotation 3D electron diffraction data is presented that takes multiple scattering effects into account. Dynamical and kinematical refinements of 12 compounds-ranging from small organic compounds to metal-organic frameworks to inorganic materials-are compared, for which the new approach yields significantly improved models in terms of accuracy and reliability with up to fourfold reduction of the noise level in difference Fourier maps. The intrinsic sensitivity of dynamical diffraction to the absolute structure is also used to assign the handedness of 58 crystals of 9 different chiral compounds, showing that 3D electron diffraction is a reliable tool for the routine determination of absolute structures.
- Publication type
- Journal Article MeSH
In this study, we present the synthesis, characterization, and structural analysis of a novel zeolite, ITQ-70, using 3D electron diffraction. This unique material was synthesized under alkaline conditions, employing tetrakis(diethylamino)phosphonium as an organic structure-directing agent, leading to the formation of a pure silica zeolite. ITQ-70 is distinguished by its extra-large pore apertures, which extend along all three axes and intersect one to the other. A notable feature of this zeolite is the presence of structurally ordered defects in very high concentrations (38 % of the silicon atoms). As a result, ITQ-70 exhibits the lowest framework density (10.0 T/1000 Å3) ever reported for any zeolite except RWY (7.6 T/1000 Å3), which contains sulfur instead of oxygen connecting T-atoms.
- Keywords
- 3DED, NMR, chiral, extra-large pore zeolite, structure,
- Publication type
- Journal Article MeSH