Nejvíce citovaný článek - PubMed ID 26583989
CH Stretching Region: Computational Modeling of Vibrational Optical Activity
Helicenes are known to provide extremely strong optical activity. Prediction of the properties of helicenes may facilitate their design and synthesis for analytical or materials sciences. On a model 7,12,17-trioxa[11]helicene molecule, experimental results from multiple spectroscopic techniques are analyzed on the basis of density functional theory (DFT) simulations to test computational methodology and analyze the origins of chirality. Infrared (IR), vibrational circular dichroism (VCD), electronic circular dichroism (ECD), magnetic circular dichroism (MCD), and Raman optical activity (ROA, computations only) spectra are compared. Large dissymmetry factors are predicted both for vibrational (ROA/Raman ∼ VCD/IR ∼ 10-3) and electronic (ECD/Abs ∼10-2) optical activity, which could be verified experimentally except for ROA. Largest VCD signals come from a strong vibrational coupling of the C-H in-plane and out-of-plane bending modes in stacked helicene rings. The sum-over-states (SOS) approach appeared convenient for simulation of MCD spectra. Our results demonstrated that selected computational methods can be successfully used for reliable modeling of spectral and chiroptical properties of large helicenes. In particular, they can be used for guiding rational design of strongly chiral chromophores.
- Publikační typ
- časopisecké články MeSH
We report as a proof-of-concept the first application of circularly polarized luminescence (CPL) measured with a Raman optical activity (ROA) spectrometer to differentiate several DNA structures without need of sensitizing complexes. The ROA/CPL approach provides sufficiently high CPL intensity to use hydrated Eu3+ ions, thus avoiding DNA structural changes associated with binding of sensitizers and overcoming the sensitizer quenching issue. We showed that deoxyguanosine monophosphate (dGMP), single- and double-stranded DNA provide different CPL spectra, which could be used for their discrimination. Our results demonstrate that ROA/CPL method is a promising approach to measure CPL spectra of complex biomolecules when the use of sensitizers is not possible. The method can be extended to other biomolecules, such as proteins, lipids, sugars, etc.
- MeSH
- deoxyguaninnukleotidy chemie MeSH
- DNA chemie MeSH
- europium chemie MeSH
- luminiscence MeSH
- Ramanova spektroskopie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deoxyguaninnukleotidy MeSH
- DNA MeSH
- europium MeSH