Nejvíce citovaný článek - PubMed ID 27147438
Adsorption and advanced oxidation processes, especially photocatalysis, are amongst the most common water treatment methodologies. Unfortunately, using each of these techniques independently does not fully eliminate the pollutants of diverse nature, which are present in wastewater. Here, an avenue for multifunctional materials for water treatment is opened by reporting for the first time the preparation, characterization, and study of the properties of a novel multifunctional nanocomposite with both adsorption and visible-light-driven photocatalysis abilities. These multifunctional nanocomposites, namely iron (II, III) oxide/poly(N-isopropylacrylamide-co-methacrylic acid)/silver-titanium dioxide (Fe3O4/P(NIPAM-co-MAA)/Ag-TiO2), are prepared by combining magnetic polymeric microspheres (Fe3O4/P(NIPAM-co-MAA)) with silver-decorated titanium dioxide nanoparticles (Ag-TiO2 NPs). Cationic dyes, such as basic fuchsin (BF), can be adsorbed by the nanocomposites thanks to the carboxylic groups of Fe3O4/P(NIPAM-co-MAA) microspheres. Concomitantly, the presence of Ag-TiO2 NPs endows the system with the visible-light-driven photocatalytic degradation ability toward antibiotics such as ciprofloxacin (CIP) and norfloxacin (NFX). Furthermore, the proposed nanocomposites show antibacterial activity toward Escherichia coli (E. coli), thanks to the presence of silver nanoparticles (Ag NPs). Due to the superparamagnetic properties of iron (II, III) oxide nanoparticles (Fe3O4 NPs), the nanocomposites can be also recycled and reused, after the cleaning process, by using an external magnetic field.
- Klíčová slova
- adsorption, dyes and antibiotics, multifunctionality, recycling, visible‐light‐driven photocatalysis,
- Publikační typ
- časopisecké články MeSH
Antibiotics in wastewater represent a growing and worrying menace for environmental and human health fostering the spread of antimicrobial resistance. Titanium dioxide (TiO2) is a well-studied and well-performing photocatalyst for wastewater treatment. However, it presents drawbacks linked with the high energy needed for its activation and the fast electron-hole pair recombination. In this work, TiO2 nanoparticles were decorated with Ag nanoparticles by a facile photochemical reduction method to obtain an increased photocatalytic response under visible light. Although similar materials have been reported, we advanced this field by performing a study of the photocatalytic mechanism for Ag-TiO2 nanoparticles (Ag-TiO2 NPs) under visible light taking in consideration also the rutile phase of the TiO2 nanoparticles. Moreover, we examined the Ag-TiO2 NPs photocatalytic performance against two antibiotics from the same family. The obtained Ag-TiO2 NPs were fully characterised. The results showed that Ag NPs (average size: 23.9 ± 18.3 nm) were homogeneously dispersed on the TiO2 surface and the photo-response of the Ag-TiO2 NPs was greatly enhanced in the visible light region when compared to TiO2 P25. Hence, the obtained Ag-TiO2 NPs showed excellent photocatalytic degradation efficiency towards the two fluoroquinolone-based antibiotics ciprofloxacin (92%) and norfloxacin (94%) after 240 min of visible light irradiation, demonstrating a possible application of these particles in wastewater treatment. In addition, it was also proved that, after five Ag-TiO2 NPs re-utilisations in consecutive ciprofloxacin photodegradation reactions, only a photocatalytic efficiency drop of 8% was observed. Scavengers experiments demonstrated that the photocatalytic mechanism of ciprofloxacin degradation in the presence of Ag-TiO2 NPs is mainly driven by holes and ˙OH radicals, and that the rutile phase in the system plays a crucial role. Finally, Ag-TiO2 NPs showed also antibacterial activity towards Escherichia coli (E. coli) opening the avenue for a possible use of this material in hospital wastewater treatment.
- Publikační typ
- časopisecké články MeSH