Most cited article - PubMed ID 27165937
A molecular phylogeny of rose chafers (Coleoptera: Scarabaeidae: Cetoniinae) reveals a complex and concerted morphological evolution related to their flight mode
We investigated and described the thoracic structures, jumping mechanism, and promesothoracic interlocking mechanism of the click beetle Campsosternus auratus (Drury) (Elateridae: Dendrometrinae). Two experiments were conducted to reveal the critical muscles and sclerites involved in the jumping mechanism. They showed that M2 and M4 are essential clicking-related muscles. The prosternal process, the prosternal rest of the mesoventrite, the mesoventral cavity, the base of the elytra, and the posterodorsal evagination of the pronotum are critical clicking-related sclerites. The destruction of any of these muscles and sclerites resulted in the loss of normal clicking and jumping ability. The mesonotum was identified as a highly specialized saddle-shaped biological spring that can store elastic energy and release it abruptly. During the jumping process of C. auratus, M2 contracts to establish and latch the clicking system, and M4 contracts to generate energy. The specialized thoracic biological springs (e.g., the prosternum and mesonotum) and elastic cuticles store and abruptly release the colossal energy, which explosively raises the beetle body in a few milliseconds. The specialized trigger muscle for the release of the clicking was not found; our study supports the theory that the triggering of the clicking is due to the building-up of tension (i.e., elastic energy) in the system.
- Keywords
- 3D reconstruction, clamping, click beetles, clicking, function, locking, musculature,
- Publication type
- Journal Article MeSH
Two new species of the southern African genus Xiphoscelis Burmeister, 1842 are recognised and described, X. braunsi sp. nov. from the Eastern and Western Cape Karoo (South Africa) and X. namibica sp. nov. from the Huns Mountains of southern Namibia and adjacent ranges in South Africa. These were previously overlooked and grouped together with X. schuckardi Burmeister, 1842, but further material and more in-depth analyses have now revealed their clear separation on the basis of key diagnostic features, including clypeal structure, metatibial spur development and aedeagal shape. The densely and coarsely costate elytral structure and the black to brown colour of these species are symplesiomorphies shared with a number of the most primitive genera among the African Cetoniinae. However, these characters also reflect the convergent adaptation to hot and arid conditions they share with several other species occurring in this region. Phylogenetic relationships of the genus with other Cetoniinae are explored using the larval characters highlighted in the description of the 3rd instar larva of X. braunsi sp. nov. The extraordinary hypertrophy observed in the male metatibial spur of species in this genus, and particularly in X. schuckardi, appears to represent a defence mechanism against potential predators on the ground, apart from playing a role during mating.
- Keywords
- Xiphoscelidini, Afrotropical region, Succulent Karoo, fruit chafers, identification key, immature stages, life cycle, taxonomy,
- Publication type
- Journal Article MeSH