Nejvíce citovaný článek - PubMed ID 27246641
Prevalence of infectious complications in burn patients requiring intensive care: data from a pan-European study
BACKGROUND: In view of the ever-increasing representation of Staphylococcus spp. strains resistant to various antibiotics, the development of in vivo models for evaluation of novel antimicrobials is of utmost importance. METHODS: In this article, we describe the development of a fully immunocompetent porcine model of extensive skin and soft tissue damage suitable for testing topical antimicrobial agents that matches the real clinical situation. The model was developed in three consecutive stages with protocols for each stage amended based on the results of the previous one. RESULTS: In the final model, 10 excisions of the skin and underlying soft tissue were created in each pig under general anesthesia, with additional incisions to the fascia performed at the base of the defects and immediately inoculated with Staphylococcus aureus suspension. One pig was not inoculated and used as the negative control. Subsequently, the bandages were changed on Days 4, 8, 11, and 15. At these time points, a filter paper imprint technique (FPIT) was made from each wound for semi-quantitative microbiological evaluation. Tissue samples from the base of the wound together with the adjacent intact tissue of three randomly selected defects of each pig were taken for microbiological, histopathological, and molecular-biological examination. The infection with the inoculated S. aureus strains was sufficient during the whole experiment as confirmed by both FPIT and from tissue samples. The dynamics of the inflammatory markers and clinical signs of infection are also described. CONCLUSIONS: A successfully developed porcine model is suitable for in vivo testing of novel short-acting topical antimicrobial agents.
- Klíčová slova
- Staphylococcus aureus, animal model, antimicrobial agents, porcine model, skin and soft‐tissue infection (SSTI), wound infection,
- MeSH
- antibakteriální látky * aplikace a dávkování terapeutické užití farmakologie MeSH
- aplikace lokální MeSH
- infekce měkkých tkání * farmakoterapie mikrobiologie MeSH
- kůže mikrobiologie patologie MeSH
- methicilin rezistentní Staphylococcus aureus * účinky léků MeSH
- modely nemocí na zvířatech * MeSH
- prasata MeSH
- stafylokokové infekce kůže * farmakoterapie mikrobiologie MeSH
- stafylokokové infekce * farmakoterapie mikrobiologie MeSH
- Staphylococcus aureus * účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
Pseudomonas aeruginosa poses a significant threat to both immunocompetent and immunocompromised individuals, often resulting in life-threatening infections. With increasing antimicrobial resistance, novel therapeutic strategies are urgently needed. Although animal models are crucial for preclinical studies, limited data are available for porcine models, more specifically for P. aeruginosa complicated skin and soft tissue infections (cSSTIs). This study presents a novel porcine model inducing and sustaining cSSTI for 14 days. Six pigs (120 wounds) were used for the development of infections, and within this group, two pigs (40 wounds) were used to evaluate the progression of the cSSTI infection. The model demonstrated bacterial loads of more than 107 CFU/gram of tissue or higher. The cSSTI fully developed within three days and remained well above these levels until day 14 post-infection. Due to the immunocompetence of this model, all the immunological processes associated with the response to the presence of infection and the wound healing process are preserved.
- Klíčová slova
- ESKAPE pathogen, model development, pig, wound,
- Publikační typ
- časopisecké články MeSH
Wohlfahrtiimonas chitiniclastica are bacteria that cause rare infections, typically associated with the infestation of an open wound with fly larvae. Here, we present a unique case report of the first W. chitiniclastica isolation from a burn wound with accidental myiasis in a 63-year-old homeless man and a literature review focused on human infections caused by these bacteria. So far, 23 cases of infection with W. chitiniclastica have been reported; in 52% of these, larvae were found in the wound area. Most of these cases suffered from chronic non-healing wound infections but none of these were burn injuries. The overall fatality rate associated directly with W. chitiniclastica in these cases was 17%. Infections with parasitic larvae occur in moderate climates (especially in people living in poor conditions); therefore, an infection with rare bacteria associated with accidental myiasis, such as W. chitiniclastica, can be expected to become more common there. Thus, in view of the absence of recommendations regarding the treatment of patients with accidental myiasis and, therefore, the risk of infection with W. chitiniclastica or other rare pathogens, we provide a list of recommendations for the treatment of such patients. The importance of meticulous microbial surveillance using molecular biological methods to facilitate the detection of rare pathogens is emphasized.
- Klíčová slova
- Wohlfahrtiimonas chitiniclastica, burn wound infection, myiasis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Infectious complications are responsible for the majority of mortalities and morbidities of patients with critical burns. Although bacteria are the predominant etiological agents in such patients, yeasts and fungi have become relatively common causes of infections over the last decade. Here, we report a case of a young man with critical burns on 88% TBSA (total body surface area) arising as a part of polytrauma. The patient's history of orthotopic liver transplantation associated with the patient's need to use combined immunosuppressant therapy was an additional complication. Due to deep burns in the forearm region, we have (after a suitable wound bed preparation) applied a new bi-layered dermal substitute. The patient, however, developed a combined fungal infection in the region of this dermal substitute caused by Trichoderma longibrachiatum and Aspergillus fischeri (the first case ever reported). The infection caused the loss of the split-thickness skin grafts (STSGs); we had to perform repeated hydrosurgical and mechanical debridement and a systemic antifungal treatment prior to re-application of the STSGs. The subsequent skin transplant was successful.
- Klíčová slova
- Aspergillus, Trichoderma, critical burns, dermal substitute, immunosuppression, infection, liver transplantation,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH