Most cited article - PubMed ID 27339131
Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax
Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal-the blind mole rat Spalax galili-that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.
- Keywords
- bitter taste, ecological speciation, functional assay, local adaptation,
- MeSH
- Taste genetics MeSH
- Adaptation, Physiological genetics MeSH
- Mammals MeSH
- Spalax * genetics MeSH
- Genetic Speciation MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.
- Keywords
- genomic sequencing, methylation, repeatome, speciation models, subterranean rodents,
- MeSH
- Adaptation, Biological MeSH
- Biological Evolution * MeSH
- Epigenesis, Genetic MeSH
- Genetic Variation MeSH
- Genome MeSH
- Polymorphism, Single Nucleotide MeSH
- Evolution, Molecular MeSH
- Genetics, Population MeSH
- Reproductive Isolation MeSH
- Spalax genetics physiology MeSH
- Sympatry * MeSH
- Gene Flow MeSH
- DNA Copy Number Variations MeSH
- Linkage Disequilibrium MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Israel MeSH