Most cited article - PubMed ID 27340233
Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis
Zinc is essential for the functioning of numerous proteins in plants. To investigate how Zn homeostasis interacts with virus infection, Zn-tolerant Noccaea ochroleucum plants exposed to deficient (Zn'0'), optimal (Zn10), and excess Zn (Zn100) concentrations, as well as Cd amendment, were infected with Turnip yellow mosaic virus (TYMV). Imaging analysis of fluorescence kinetics from the μs (OJIP) to the minutes (Kautsky effect, quenching analysis) time domain revealed strong patchiness of systemic virus-induced photosystem II (PSII) inhibition. That was more pronounced in Zn-deficient plants, while Zn excess acted synergistically with TYMV, in both cases resulting in reduced PSII reaction centers. Infected Cd-treated plants, already severely stressed, showed inhibited non-photochemical quenching and PSII activity. Quantitative in situ hybridization at the cellular level showed increased gene expression of ZNT5 and downregulation of HMA4 in infected Zn-deficient leaves. In Zn10 and Zn100 infected leaves, vacuolar sequestration of Zn increased by activation of HMA3 (mesophyll) and MTP1 (epidermis). This correlated with Zn accumulation in the mesophyll and formation of biomineralization dots in the cell wall (Zn100) visible by micro X-ray fluorescence tomography. The study reveals the importance of adequate Zn supply and distribution in the maintenance of photosynthesis under TYMV infection, achieved by tissue-targeted activation of metal transporter gene expression.
- Keywords
- TYMV infection, cadmium, chlorophyll fluorescence kinetics, metal transporters, micro X-ray fluorescence, non-hyperaccumulator, plant immunity, zinc,
- Publication type
- Journal Article MeSH
Arsenic (As) contaminates the food chain and decreases agricultural production through impairing plants, particularly due to oxidative stress. To better understand the As tolerance mechanisms, two contrasting tobacco genotypes: As-sensitive Nicotiana sylvestris and As-tolerant N.tabacum, cv. 'Wisconsin' were analyzed. The most meaningful differences were found in the carbohydrate status, neglected so far in the As context. In the tolerant genotype, contrary to the sensitive one, net photosynthesis rates and saccharide levels were unaffected by As exposure. Importantly, the total antioxidant capacity was far stronger in the As-tolerant genotype, based on higher antioxidants levels (e.g., phenolics, ascorbate, glutathione) and activities and/or appropriate localizations of antioxidative enzymes, manifested as reverse root/shoot activities in the selected genotypes. Accordingly, malondialdehyde levels, a lipid peroxidation marker, increased only in sensitive tobacco, indicating efficient membrane protection in As-tolerant species. We bring new evidence of the orchestrated action of a broad spectrum of both antioxidant enzymes and molecules essential for As stress coping. For the first time, we propose robust carbohydrate metabolism based on undisturbed photosynthesis to be crucial not only for subsidizing C and energy for defense but also for participating in direct reactive oxygen species (ROS) quenching. The collected data and suggestions can serve as a basis for the selection of plant As phytoremediators or for targeted breeding of tolerant crops.
- Keywords
- ROS, antioxidant, antioxidant enzyme, arsenate, arsenic, arsenite, oxidative stress, saccharides, tolerant and sensitive tobacco,
- Publication type
- Journal Article MeSH
Chlorophyll fluorescence kinetic analysis has become an important tool in basic and applied research on plant physiology and agronomy. While early systems recorded the integrated kinetics of a selected spot or plant, later systems enabled imaging of at least the slower parts of the kinetics (20-ms time resolution). For faster events, such as the rise from the basic dark-adapted fluorescence yield to the maximum (OJIP transient), or the fluorescence yield decrease during reoxidation of plastoquinone A after a saturating flash, integrative systems are used because of limiting speed of the available imaging systems. In our new macroscopic and microscopic systems, the OJIP or plastonique A reoxidation fluorescence transients are directly imaged using an ultrafast camera. The advantage of such systems compared to nonimaging measurements is the analysis of heterogeneity of measured parameters, for example between the photosynthetic tissue near the veins and the tissue further away from the veins. Further, in contrast to the pump-and-probe measurement, direct imaging allows for measuring the transition of the plant from the dark-acclimated to a light-acclimated state via a quenching analysis protocol in which every supersaturating flash is coupled to a measurement of the fast fluorescence rise. We show that pump-and-probe measurement of OJIP is prone to artifacts, which are eliminated with the direct measurement. The examples of applications shown here, zinc deficiency and cadmium toxicity, demonstrate that this novel imaging platform can be used for detection and analysis of a range of alterations of the electron flow around PSII.
- MeSH
- Arabidopsis cytology metabolism MeSH
- Brassicaceae cytology drug effects metabolism MeSH
- Chlorophyll chemistry metabolism MeSH
- Equipment Design MeSH
- Fluorescence MeSH
- Microscopy, Fluorescence instrumentation methods MeSH
- Photosynthesis MeSH
- Glycine max cytology drug effects metabolism MeSH
- Kinetics MeSH
- Plant Leaves cytology MeSH
- Mesophyll Cells metabolism MeSH
- Plastoquinone metabolism MeSH
- Zinc metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorophyll MeSH
- Plastoquinone MeSH
- Zinc MeSH