arsenite
Dotaz
Zobrazit nápovědu
Protein kinases are involved in the transfer of phosphate group to serine, threonine, and tyrosine residues of a target protein. With No Lysine (WNK) kinase is a member of the serine/threonine protein kinase family, which has conserved catalytic lysine (K) residue in subdomain I instead of being in subdomain II.The WNKs family members in plants are stress inducible and have been validated for their role in abiotic stress tolerance. In the present study, we have characterized Arabidopsis overexpressed lines of OsWNK9 regulated by the constitutive promoter under arsenite stress. Moreover, we have performed In silico expression analysis of OsWNK9 under nutrient deficiency and heavy metal stress. Three independent transgenic Arabidopsis (OsWNK9-OX T11, T12,andT13) lines showed tolerance to arsenite stress compared to wild-type (WT) plants. Under arsenite stress, transgenic lines T11, T12 and T13 showed 56.46, 57.8 and 51.66 % increased biomass respectively, as compared to WT plants. All three ArabidopsisOsWNK9-OX lines exhibited higher proline content, increased antioxidant enzyme activities and lower hydrogen peroxide levels under arsenite stress. Besides, the total antioxidant capacity in terms of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging percentage was increased by 8-15 % in three independent OsWNK9-OX lines compared with those of WT plants. Protein-protein interaction analysis of OsWNK9 predicted interaction partners with protein kinase and oxidative stress-responsive protein. Co-expression analysis of OsWNK9 in phosphate deficiency and arsenate stress condition predicted various proteins including membrane transporter and transcription factors. Taken together, our results, for the first time, provide evidence that OsWNK9 could positively mediate arsenite stress tolerance in plants.
- Klíčová slova
- Antioxidant enzymes, Arsenite, In silico, Overexpression, Rice, WNK,
- MeSH
- Arabidopsis * genetika MeSH
- arsenitany * toxicita MeSH
- geneticky modifikované rostliny genetika MeSH
- regulace genové exprese u rostlin MeSH
- rýže (rod) * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arsenitany * MeSH
Stress granules (SGs), hallmarks of the cellular adaptation to stress, promote survival, conserve cellular energy, and are fully dissolved upon the cessation of stress treatment. Different stresses can initiate the assembly of SGs, but arsenite and heat are the best studied of these stresses. The composition of SGs and posttranslational modifications of SG proteins differ depending on the type and severity of the stress insult, methodology used, cell line, and presence of overexpressed and tagged proteins. A group of 18 proteins showing differential localization to SGs in heat- and arsenite-stressed mammalian cell lines is described. Upon severe and prolonged stress, physiological SGs transform into more solid protein aggregates that are no longer reversible and do not contain mRNA. Similar pathological inclusions are hallmarks of neurodegenerative diseases. SGs induced by heat stress are less dynamic than SGs induced by arsenite and contain a set of unique proteins and linkage-specific polyubiquitinated proteins. The same types of ubiquitin linkages have been found to contribute to the development of neurodegenerative disorders such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis (ALS). We propose heat stress-induced SGs as a possible model of an intermediate stage along the transition from dynamic, fully reversible arsenite stress-induced SGs toward aberrant SGs, the hallmark of neurodegenerative diseases. Stress- and methodology-specific differences in the compositions of SGs and the transition of SGs to aberrant protein aggregates are discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
- Klíčová slova
- SGs, aberrant granules, heat stress, neurodegenerative diseases, sodium arsenite stress, stress granules,
- MeSH
- arsenitany metabolismus MeSH
- cytoplazmatická granula metabolismus MeSH
- fyziologický stres MeSH
- lidé MeSH
- posttranslační úpravy proteinů MeSH
- vysoká teplota * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- arsenitany MeSH
We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.
- MeSH
- arsen chemie MeSH
- arseničnany izolace a purifikace MeSH
- arsenitany izolace a purifikace MeSH
- fotoelektronová spektroskopie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- krystalografie rentgenová MeSH
- magnetické nanočástice chemie ultrastruktura MeSH
- spektroskopie Mossbauerova MeSH
- teplota MeSH
- velikost částic MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arsen MeSH
- arsenic acid MeSH Prohlížeč
- arseničnany MeSH
- arsenitany MeSH
- arsenite MeSH Prohlížeč
- ferrate ion MeSH Prohlížeč
- magnetické nanočástice MeSH
- železo MeSH
Although mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice. We determined tissue and urinary concentrations and proportions of iAs, methylarsenic (MAs), and dimethylarsenic (DMAs) in male and female Hs and wild-type (WT) mice that received 25- or 400-ppb iAs in drinking water. At both exposure levels, Hs mice excrete less total arsenic (tAs) in urine and retain more tAs in tissues than WT mice. Tissue tAs levels are higher in Hs females than in Hs males, particularly after exposure to 400-ppb iAs. Tissue and urinary fractions of tAs present as iAs and MAs are significantly greater in Hs mice than in WT mice. Notably, tissue tAs dosimetry in Hs mice resembles human tissue dosimetry predicted by a physiologically based pharmacokinetic model. These data provide additional support for use of Hs mice in laboratory studies examining effects of iAs exposure in target tissues or cells.
- MeSH
- arsen * MeSH
- arsenikové přípravky * MeSH
- arsenitany * MeSH
- lidé MeSH
- methyltransferasy MeSH
- myši MeSH
- pitná voda * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- arsen * MeSH
- arsenikové přípravky * MeSH
- arsenitany * MeSH
- arsenite MeSH Prohlížeč
- AS3MT protein, human MeSH Prohlížeč
- AS3MT protein, mouse MeSH Prohlížeč
- methyltransferasy MeSH
- pitná voda * MeSH
A novel hybrid material (gC3N4-rFe) consisting of amine-rich graphitic carbon nitride (gC3N4), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC3N4-rFe bears aggregation-free Fe-nanoparticles (10nm) uniformly dispersed over the gC3N4 surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20-100nm). (57)Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O2. The as-prepared gC3N4-rFe bears Fe(2+) and Fe° phases, however only after long exposure to ambient O2, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC3N4-rFe hybrid shows enhanced As(III) uptake capacity of 76.5mgg(-1), i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC3N4-rFe is a superior As(III) sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11-36mgg(-1)). The present results demonstrate that the gC3N4 matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity.
- Klíčová slova
- Arsenite, Carbon nitride, Dual mode EPR, Fe amorphous nanoparticles, Fe(2+)/Fe(3+)-oxide, Mössbauer spectroscopy,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Arsenic, a representative toxic metalloid, is responsible for serious global health problems. Most organisms possess arsenic resistance strategies to mitigate this toxicity. Here, we reported a microorganism, strain AS8, from heavy metal/metalloid-contaminated soil that is able to oxidize arsenite, and investigated its physiological and genomic traits. Its cells were rod-shaped and Gram-negative, and formed small beige-pigmented colonies. 16S rRNA-based phylogenetic analysis indicated that the strain belongs to the genus Herminiimonas and is closely related to Herminiimonas glaciei UMB49T (98.7% of 16S rRNA gene sequence similarity), Herminiimonas arsenicoxydans ULPAs1T (98.4%), and Herminiimonas saxobsidens NS11T (98.4%). Under chemolithoheterotrophic conditions, the strain utilized some organic acids and amino acids as carbon and/or nitrogen sources but not electron sources. Further, the strain grew as a sulfur oxidizer in a complex medium (trypticase soy agar). Unexpectedly, most carbohydrates failed to support its growth as sole carbon sources. Genome sequencing supported these observations, and very few ABC transporters capable of oligo/monosaccharide uptake were identified in the AS8 genome. The genome harbored genes required for the colonization, flagella biosynthesis, urea degradation, and heavy metal and antibiotic resistance. Based on these polyphasic and genomic analyses, we propose that the strain AS8 be named Herminiimonas arsenitoxidans.
Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.
- Klíčová slova
- Arsenate reductase, Arsenic species, Arsenite antiporter, Hyperaccumulating fern, Organoarsenicals, Phytochelatin,
- Publikační typ
- časopisecké články MeSH
Addition of different concentrations of sodium arsenite to the fermentation medium used for the production of mitomycin antibiotics by Streptomyces caespitosus hindered the biosynthesis of mitomycins and led to the accumulation of 2-oxoglutarate, pyruvate and acetone. Mitomycin C isolated and purified using thin-layer chromatography in low concentration of about 0.1 mug/ml did not affect the RNA, DNA and protein biosynthesis of the growing Bacillus subtilis, while at 10 mug/ml mitomycin C markedly affected RNA, DNA and protein biosynthesis.
- MeSH
- aceton metabolismus MeSH
- arsen farmakologie MeSH
- Bacillus subtilis účinky léků metabolismus MeSH
- bakteriální proteiny biosyntéza MeSH
- bakteriální RNA biosyntéza MeSH
- DNA bakterií biosyntéza MeSH
- fermentace MeSH
- kyseliny ketoglutarové biosyntéza MeSH
- mitomyciny biosyntéza farmakologie MeSH
- pyruváty biosyntéza MeSH
- Streptomyces účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aceton MeSH
- arsen MeSH
- bakteriální proteiny MeSH
- bakteriální RNA MeSH
- DNA bakterií MeSH
- kyseliny ketoglutarové MeSH
- mitomyciny MeSH
- pyruváty MeSH
The influence of soil contamination by inorganic and organic arsenic compounds on uptake, accumulation, and transformation of arsenic in pepper (Capsicum annum L.) was investigated in greenhouse pot experiments under controlled conditions. Pepper plants were cultivated in substrate amended by aqueous solutions of arsenite, arsenate, methylarsonic acid (MA), and dimethylarsinic acid (DMA) applied individually into cultivation substrate at concentrations of 15 mg As per kg of substrate. The plant availability of the arsenicals increased in the order arsenite = arsenate < MA < DMA. The highest arsenic concentrations were found in roots followed by stems, leaves, and fruits regardless of arsenic compound applied. In the control samples of pepper fruits, As(III), As(V), and DMA were present (25%, 37%, and 39% of the water-extractable arsenic). In control stems + leaves and roots, As(V) was the major compound (63% and 53% in a phosphate buffer extract) followed by As(III) representing 33% and 42%. Additionally, low concentrations (not exceeding 5%) of DMA and MA were detected as well. In all the soils analyzed after the first harvest of pepper fruits, arsenate was the dominating compound followed by arsenite. Methylarsonic acid, methylarsonous acid, and DMA were present at varying concentrations depending on the individual soil treatments. In the treated plants, the arsenic compounds in plant tissues reflected predominantly the extractable portions of arsenic compounds present in soil after amendment, and this pattern was more significant in the first part of vegetation period. The results confirmed the ability of generative parts of plants to accumulate preferably organic arsenic compounds, whereas in the roots and aboveground biomass, mainly inorganic arsenic species are present. Evidently, the source of soil arsenic contamination affects significantly the extractable portions of arsenic compounds in soil and subsequently the distribution of arsenic compounds within the plants.
- MeSH
- arsen analýza MeSH
- arseničnany farmakokinetika MeSH
- arsenikové přípravky analýza farmakokinetika MeSH
- arsenitany farmakokinetika MeSH
- Capsicum metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kyselina kakodylová farmakokinetika MeSH
- látky znečišťující půdu analýza farmakokinetika MeSH
- stavba rostlin účinky léků MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arsen MeSH
- arsenic acid MeSH Prohlížeč
- arseničnany MeSH
- arsenikové přípravky MeSH
- arsenitany MeSH
- arsenite MeSH Prohlížeč
- kyselina kakodylová MeSH
- látky znečišťující půdu MeSH
- monomethylarsonic acid MeSH Prohlížeč
A proof of concept of a novel pervaporation sequential injection (PSI) analysis method for automatic non-chromatographic speciation analysis of inorganic arsenic in complex aqueous samples is presented. The method is based on hydride generation of arsine followed by its on-line pervaporation-based membrane separation and CCD spectrophotometric detection. The concentrations of arsenite (As(III)) and arsenate (As(V)) are determined sequentially in a single sample zone. The leading section of the sample zone merges with a citric acid/citrate buffer solution (pH 4.5) for the selective reduction of As(III) to arsine while the trailing section of the sample zone merges with hydrochloric acid solution to allow the reduction of both As(III) and As(V) to arsine at pH lower than 1. Virtually identical analytical sensitivity is obtained for both As(III) and As(V) at this high acidity. The flow analyzer also accommodates in-line pH detector for monitoring of the acidity throughout the sample zone prior to hydride generation. Under optimal conditions the proposed PSI method is characterized by a limit of detection, linear calibration range and repeatability for As(III) of 22 μg L(-1) (3sblank level criterion), 50-1000 μg L(-1) and 3.0% at the 500 μg L(-1) level and for As(V) of 51 μg L(-1), 100-2000 μg L(-1) and 2.6% at the 500 μg L(-1) level, respectively. The method was validated with mixed As(III)/As(V) standard aqueous solutions and successfully applied to the determination of As(III) and As(V) in river water samples with elevated content of dissolved organic carbon and suspended particulate matter with no prior sample pretreatment. Excellent relative recoveries ranging from 98% to 104% were obtained for both As(III) and As(V).
- Klíčová slova
- Hydride generation, Inorganic arsenic, Pervaporation, Sequential injection analysis, Speciation,
- MeSH
- arseničnany izolace a purifikace MeSH
- arsenikové přípravky chemie MeSH
- arsenitany izolace a purifikace MeSH
- chemické látky znečišťující vodu izolace a purifikace MeSH
- kalibrace MeSH
- koncentrace vodíkových iontů MeSH
- kyselina citronová chemie MeSH
- limita detekce MeSH
- průtoková injekční analýza metody MeSH
- řeky chemie MeSH
- spektrofotometrie přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arsenic acid MeSH Prohlížeč
- arseničnany MeSH
- arsenikové přípravky MeSH
- arsenitany MeSH
- arsenite MeSH Prohlížeč
- arsine MeSH Prohlížeč
- chemické látky znečišťující vodu MeSH
- kyselina citronová MeSH