Most cited article - PubMed ID 27601067
Melatonin promotes cardiomyogenesis of embryonic stem cells via inhibition of HIF-1α stabilization
Chronic lymphocytic leukemia (CLL) is the most prevalent lymphoid malignancy in many geographical regions of the world. Pseurotin D, a secondary metabolite of fungi, represents a group of bioactive natural products with a newly ascribed range of interesting biological activities. The purpose of this study was to bring new insights into the mechanism behind the effects of pseurotin D on MEC-1 cells as a representative CLL cell line, with a particular focus on selected signaling pathways important in the proliferation of cells and targeting mitochondrial metabolism. Our results showed that pseurotin D was able to significantly inhibit the proliferation of MEC-1 cells and arrested them in the G2/M cell cycle phase. In addition, pseurotin D was able to induce apoptosis. We found that all of these effects were associated with a change in mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). We showed for the first time that pseurotin D suppresses MEC-1 cell proliferation and induces apoptotic cell death via induction of the collapse of the mitochondria respiratory chain and the ROS-related caspase pathway. Our results show the pseurotins family as promising compounds which could serve as a basis for the development of new compounds in the treatment of lymphoma.
- Keywords
- apoptosis, lymphoma, mitochondrial activity, proliferation, pseurotin D, reactive oxygen species,
- Publication type
- Journal Article MeSH
ACE2 was observed as the cell surface receptor of the SARS-CoV-2 virus. Interestingly, we also found ACE2 positivity inside the cell nucleus. The ACE2 levels changed during cell differentiation and aging and varied in distinct cell types. We observed ACE2 depletion in the aortas of aging female mice, similarly, the aging caused ACE2 decrease in the kidneys. Compared with that in the heart, brain and kidneys, the ACE2 level was the lowest in the mouse lungs. In mice exposed to nicotine, ACE2 was not changed in olfactory bulbs but in the lungs, ACE2 was upregulated in females and downregulated in males. These observations indicate the distinct gender-dependent properties of ACE2. Differentiation into enterocytes, and cardiomyocytes, caused ACE2 depletion. The cardiomyogenesis was accompanied by renin upregulation, delayed in HDAC1-depleted cells. In contrast, vitamin D2 decreased the renin level while ACE2 was upregulated. Together, the ACE2 level is high in non-differentiated cells. This protein is more abundant in the tissues of mouse embryos and young mice in comparison with older animals. Mostly, downregulation of ACE2 is accompanied by renin upregulation. Thus, the pathophysiology of COVID-19 disease should be further studied not only by considering the ACE2 level but also the whole renin-angiotensin system.
- Keywords
- ACE2, embryonic heart, human kidney embryonic cells, lung cancer cells, renin,
- MeSH
- Angiotensin-Converting Enzyme 2 metabolism MeSH
- Cell Differentiation physiology MeSH
- A549 Cells MeSH
- HT29 Cells MeSH
- COVID-19 epidemiology pathology virology MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mice MeSH
- Pandemics MeSH
- Gene Expression Regulation physiology MeSH
- Renin-Angiotensin System physiology MeSH
- Renin metabolism MeSH
- SARS-CoV-2 pathogenicity MeSH
- Sex Factors MeSH
- Aging physiology MeSH
- Age Factors MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Angiotensin-Converting Enzyme 2 MeSH
- Renin MeSH