Pseurotin D Induces Apoptosis through Targeting Redox Sensitive Pathways in Human Lymphoid Leukemia Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-18858S
Grantova agentura ceske republiky
No.888811
IBP CAS
CZ.02.1.01/0.0/0.0/16_025/0007381
Operational Programme Research, Development and Education - "Preclinical Progression of New Organic Compounds with Targeted Biological Activity"
PubMed
34679711
PubMed Central
PMC8533295
DOI
10.3390/antiox10101576
PII: antiox10101576
Knihovny.cz E-resources
- Keywords
- apoptosis, lymphoma, mitochondrial activity, proliferation, pseurotin D, reactive oxygen species,
- Publication type
- Journal Article MeSH
Chronic lymphocytic leukemia (CLL) is the most prevalent lymphoid malignancy in many geographical regions of the world. Pseurotin D, a secondary metabolite of fungi, represents a group of bioactive natural products with a newly ascribed range of interesting biological activities. The purpose of this study was to bring new insights into the mechanism behind the effects of pseurotin D on MEC-1 cells as a representative CLL cell line, with a particular focus on selected signaling pathways important in the proliferation of cells and targeting mitochondrial metabolism. Our results showed that pseurotin D was able to significantly inhibit the proliferation of MEC-1 cells and arrested them in the G2/M cell cycle phase. In addition, pseurotin D was able to induce apoptosis. We found that all of these effects were associated with a change in mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). We showed for the first time that pseurotin D suppresses MEC-1 cell proliferation and induces apoptotic cell death via induction of the collapse of the mitochondria respiratory chain and the ROS-related caspase pathway. Our results show the pseurotins family as promising compounds which could serve as a basis for the development of new compounds in the treatment of lymphoma.
Institute of Biophysics of the Czech Academy of Sciences 612 65 Brno Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
See more in PubMed
Parikh S.A., Meacham P.J., Zent C.S., Evans A.G. Multiple B cell malignancies in patients with chronic lymphocytic leukemia: Epidemiology, pathology, and clinical implications. Leuk. Lymphoma. 2020;61:1037–1051. doi: 10.1080/10428194.2019.1709830. PubMed DOI
Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2017;92:946–965. doi: 10.1002/ajh.24826. PubMed DOI
Ferrer G., Montserrat E. Critical molecular pathways in CLL therapy. Mol. Med. 2018;24:9. doi: 10.1186/s10020-018-0001-1. PubMed DOI PMC
Kipps T.J., Choi M.Y. Targeted Therapy in Chronic Lymphocytic Leukemia. Cancer J. 2019;25:378–385. doi: 10.1097/PPO.0000000000000416. PubMed DOI PMC
Chowdhury S.R., Banerji V. Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphocytic Leukemia. Oxidative Med. Cell. Longev. 2018;2018:1–10. doi: 10.1155/2018/2426712. PubMed DOI PMC
Chandra J. Oxidative Stress by Targeted Agents Promotes Cytotoxicity in Hematologic Malignancies. Antioxidants Redox Signal. 2009;11:1123–1137. doi: 10.1089/ars.2008.2302. PubMed DOI PMC
Vasan K., Werner M., Chandel N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020;32:341–352. doi: 10.1016/j.cmet.2020.06.019. PubMed DOI PMC
Nairismägi M.-L., Gerritsen M.E., Li Z.M., Wijaya G.C., Chia B., Laurensia Y., Lim J.Q., Yeoh K.W., Yao X.S., Pang W.L., et al. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia. 2018;32:1147–1156. doi: 10.1038/s41375-017-0004-x. PubMed DOI PMC
Bose S., Banerjee S., Mondal A., Chakraborty U., Pumarol J., Croley C., Bishayee A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells. 2020;9:1451. doi: 10.3390/cells9061451. PubMed DOI PMC
Kamran M.Z., Patil P., Gude R.P. Role of STAT3 in Cancer Metastasis and Translational Advances. BioMed Res. Int. 2013;2013:1–15. doi: 10.1155/2013/421821. PubMed DOI PMC
Guo Y., Pan W., Liu S., Shen Z., Xu Y., Hu L. ERK/MAPK signalling pathway and tumorigenesis (Review) Exp. Ther. Med. 2020;19:1997–2007. doi: 10.3892/etm.2020.8454. PubMed DOI PMC
Grivennikov S.I., Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–19. doi: 10.1016/j.cytogfr.2009.11.005. PubMed DOI PMC
Meier J.A., Larner A.C. Toward a new STATe: The role of STATs in mitochondrial function. Semin. Immunol. 2014;26:20–28. doi: 10.1016/j.smim.2013.12.005. PubMed DOI PMC
Meier J.A., Hyun M., Cantwell M., Raza A., Mertens C., Raje V., Sisler J., Tracy E., Torres-Odio S., Gispert S., et al. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci. Signal. 2017;10:eaag2588. doi: 10.1126/scisignal.aag2588. PubMed DOI PMC
Wang Y., Yu X., Song H., Feng D., Jiang Y., Wu S., Geng J. The STAT-ROS cycle extends IFN-induced cancer cell apoptosis. Int. J. Oncol. 2017;52:305–313. doi: 10.3892/ijo.2017.4196. PubMed DOI
Miklossy G., Hilliard T.S., Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 2013;12:611–629. doi: 10.1038/nrd4088. PubMed DOI PMC
Vašíček O., Fedr R., Skoroplyas S., Chalupa D., Sklenář M., Tharra P.R., Švenda J., Kubala L. Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells. Phytomedicine. 2020;69:153194. doi: 10.1016/j.phymed.2020.153194. PubMed DOI
Ando O., Satake H., Nakajima M., Sato A., Nakamura T., Kinoshita T., Furuya K., Haneishi T. Synerazol, a new antifungal antibiotic. J. Antibiot. 1991;44:382–389. doi: 10.7164/antibiotics.44.382. PubMed DOI
Komagata D., Fujita S., Yamashita N., Saito S., Morino T. Novel Neuritogenic Activities of Pseurotin A and Penicillic Acid. J. Antibiot. 1996;49:958–959. doi: 10.7164/antibiotics.49.958. PubMed DOI
Asami Y., Kakeya H., Komi Y., Kojima S., Nishikawa K., Beebe K., Neckers L., Osada H. Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008;99:1853–1858. doi: 10.1111/j.1349-7006.2008.00890.x. PubMed DOI PMC
Igarashi Y., Yabuta Y., Sekine A., Fujii K., Harada K.-I., Oikawa T., Sato M., Furumai T., Oki T. Directed Biosynthesis of Fluorinated Pseurotin A, Synerazol and Gliotoxin. J. Antibiot. 2004;57:748–754. doi: 10.7164/antibiotics.57.748. PubMed DOI
Asami Y., Kakeya H., Onose R., Yoshida A., Matsuzaki A.H., Osada H. Azaspirene: A Novel Angiogenesis Inhibitor Containing a 1-Oxa-7-azaspiro [4.4]non-2-ene-4,6-dione Skeleton Produced by the FungusNeosartoryasp. Org. Lett. 2002;4:2845–2848. doi: 10.1021/ol020104+. PubMed DOI
Anjum K., Bi H., Chai W., Lian X.-Y., Zhang Z. Antiglioma pseurotin A from marine Bacillus sp. FS8D regulating tumour metabolic enzymes. Nat. Prod. Res. 2017;32:1353–1356. doi: 10.1080/14786419.2017.1343329. PubMed DOI
Vasicek O., Rubanova D., Chytkova B., Kubala L. Natural pseurotins inhibit proliferation and inflammatory responses through the inactivation of STAT signaling pathways in macrophages. Food Chem. Toxicol. 2020;141:111348. doi: 10.1016/j.fct.2020.111348. PubMed DOI
Rubanova D., Dadova P., Vasicek O., Kubala L. Pseurotin D Inhibits the Activation of Human Lymphocytes. Int. J. Mol. Sci. 2021;22:1938. doi: 10.3390/ijms22041938. PubMed DOI PMC
Moosova Z., Pekarova M., Sindlerova L.S., Vasicek O., Kubala L., Blaha L., Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI
Georgiev Y., Paulsen B.S., Kiyohara H., Ciz M., Ognyanov M., Vasicek O., Rise F., Denev P., Lojek A., Batsalova T., et al. Tilia tomentosa pectins exhibit dual mode of action on phagocytes as β-glucuronic acid monomers are abundant in their rhamnogalacturonans I. Carbohydr. Polym. 2017;175:178–191. doi: 10.1016/j.carbpol.2017.07.073. PubMed DOI
Kudová J., Vašíček O., Číž M., Kubala L. Melatonin promotes cardiomyogenesis of embryonic stem cells via inhibition of HIF-1α stabilization. J. Pineal Res. 2016;61:493–503. doi: 10.1111/jpi.12366. PubMed DOI
Binó L., Kučera J., Štefková K., Šindlerová L., Lánová M., Kudová J., Kubala L., Pacherník J. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem. Interact. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI
Vasicek O., Lojek A., Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J. Physiol. Biochem. 2020;76:49–60. doi: 10.1007/s13105-019-00714-3. PubMed DOI
Crowley L., Christensen M.E., Waterhouse N.J. Measuring Mitochondrial Transmembrane Potential by TMRE Staining. Cold Spring Harb. Protoc. 2016;2016 doi: 10.1101/pdb.prot087361. PubMed DOI
De Biasi S., Gibellini L., Bianchini E., Nasi M., Pinti M., Salvioli S., Cossarizza A. Quantification of Mitochondrial Reactive Oxygen Species in Living Cells by Using Multi-Laser Polychromatic Flow Cytometry. Cytom Part A. 2016;89a:1106–1110. doi: 10.1002/cyto.a.22936. PubMed DOI
Frezza C., Cipolat S., Scorrano L. Organelle isolation: Functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat. Protoc. 2007;2:287–295. doi: 10.1038/nprot.2006.478. PubMed DOI
Chen L., Gong M.-W., Peng Z.-F., Zhou T., Ying M.-G., Zheng Q.-H., Liu Q.-Y., Zhang Q.-Q. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway. Mar. Drugs. 2014;12:1939–1958. doi: 10.3390/md12041939. PubMed DOI PMC
Liu Y., Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem. Pharmacol. 2019;168:285–304. doi: 10.1016/j.bcp.2019.07.008. PubMed DOI
Li Y., Qin Y., Yang C., Zhang H., Li Y., Wu B., Huang J., Zhou X., Huang B., Yang K., et al. Cardamonin induces ROS-mediated G2/M phase arrest and apoptosis through inhibition of NF-κB pathway in nasopharyngeal carcinoma. Cell Death Dis. 2017;8:e3024. doi: 10.1038/cddis.2017.407. PubMed DOI PMC
Song M., Bode A.M., Dong Z., Lee M.-H. AKT as a Therapeutic Target for Cancer. Cancer Res. 2019;79:1019–1031. doi: 10.1158/0008-5472.CAN-18-2738. PubMed DOI
Nacarelli T., Azar A., Sell C. Aberrant mTOR activation in senescence and aging: A mitochondrial stress response? Exp. Gerontol. 2014;68:66–70. doi: 10.1016/j.exger.2014.11.004. PubMed DOI PMC
Lee H.B., Yu M.-R., Yang Y., Jiang Z., Ha H. Reactive Oxygen Species-Regulated Signaling Pathways in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2003;14:S241–S245. doi: 10.1097/01.ASN.0000077410.66390.0F. PubMed DOI
Kozlov A.V., Lancaster J.R., Meszaros A.T., Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 2017;13:170–181. doi: 10.1016/j.redox.2017.05.017. PubMed DOI PMC
Nolan A., Aboud N., Kolch W., Matallanas D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes. 2021;12:553. doi: 10.3390/genes12040553. PubMed DOI PMC
Taga M., Mouton-Liger F., Paquet C., Hugon J. Modulation of oxidative stress and tau phosphorylation by the mTOR activator phosphatidic acid in SH-SY5Y cells. FEBS Lett. 2011;585:1801–1806. doi: 10.1016/j.febslet.2011.04.022. PubMed DOI
Chen K., Qiu P., Yuan Y., Zheng L., He J., Wang C., Guo Q., Kenny J., Liu Q., Zhao J., et al. Pseurotin A Inhibits Osteoclastogenesis and Prevents Ovariectomized-Induced Bone Loss by Suppressing Reactive Oxygen Species. Theranostics. 2019;9:1634–1650. doi: 10.7150/thno.30206. PubMed DOI PMC
A Helal G., A Ahmed F., Askora A., Saber T.M., Rady S.M. PSEUROTIN A FROM Aspergillus fumigatus Fr. Aumc 8002 Exhibits anticancer activity against hepatocellular carcinoma in vitro and in vivo. Slov. Veter-Res. 2019;56 doi: 10.26873/SVR-610-2019. DOI
Abdelwahed K.S., Siddique A.B., Mohyeldin M.M., Qusa M.H., Goda A.A., Singh S.S., Ayoub N.M., King J.A., Jois S.D., El Sayed K.A. Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol. Res. 2020;158:104847. doi: 10.1016/j.phrs.2020.104847. PubMed DOI PMC