• This record comes from PubMed

Pseurotin D Induces Apoptosis through Targeting Redox Sensitive Pathways in Human Lymphoid Leukemia Cells

. 2021 Oct 05 ; 10 (10) : . [epub] 20211005

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-18858S Grantova agentura ceske republiky
No.888811 IBP CAS
CZ.02.1.01/0.0/0.0/16_025/0007381 Operational Programme Research, Development and Education - "Preclinical Progression of New Organic Compounds with Targeted Biological Activity"

Chronic lymphocytic leukemia (CLL) is the most prevalent lymphoid malignancy in many geographical regions of the world. Pseurotin D, a secondary metabolite of fungi, represents a group of bioactive natural products with a newly ascribed range of interesting biological activities. The purpose of this study was to bring new insights into the mechanism behind the effects of pseurotin D on MEC-1 cells as a representative CLL cell line, with a particular focus on selected signaling pathways important in the proliferation of cells and targeting mitochondrial metabolism. Our results showed that pseurotin D was able to significantly inhibit the proliferation of MEC-1 cells and arrested them in the G2/M cell cycle phase. In addition, pseurotin D was able to induce apoptosis. We found that all of these effects were associated with a change in mitochondrial membrane potential and the production of mitochondrial reactive oxygen species (ROS). We showed for the first time that pseurotin D suppresses MEC-1 cell proliferation and induces apoptotic cell death via induction of the collapse of the mitochondria respiratory chain and the ROS-related caspase pathway. Our results show the pseurotins family as promising compounds which could serve as a basis for the development of new compounds in the treatment of lymphoma.

See more in PubMed

Parikh S.A., Meacham P.J., Zent C.S., Evans A.G. Multiple B cell malignancies in patients with chronic lymphocytic leukemia: Epidemiology, pathology, and clinical implications. Leuk. Lymphoma. 2020;61:1037–1051. doi: 10.1080/10428194.2019.1709830. PubMed DOI

Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2017;92:946–965. doi: 10.1002/ajh.24826. PubMed DOI

Ferrer G., Montserrat E. Critical molecular pathways in CLL therapy. Mol. Med. 2018;24:9. doi: 10.1186/s10020-018-0001-1. PubMed DOI PMC

Kipps T.J., Choi M.Y. Targeted Therapy in Chronic Lymphocytic Leukemia. Cancer J. 2019;25:378–385. doi: 10.1097/PPO.0000000000000416. PubMed DOI PMC

Chowdhury S.R., Banerji V. Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphocytic Leukemia. Oxidative Med. Cell. Longev. 2018;2018:1–10. doi: 10.1155/2018/2426712. PubMed DOI PMC

Chandra J. Oxidative Stress by Targeted Agents Promotes Cytotoxicity in Hematologic Malignancies. Antioxidants Redox Signal. 2009;11:1123–1137. doi: 10.1089/ars.2008.2302. PubMed DOI PMC

Vasan K., Werner M., Chandel N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020;32:341–352. doi: 10.1016/j.cmet.2020.06.019. PubMed DOI PMC

Nairismägi M.-L., Gerritsen M.E., Li Z.M., Wijaya G.C., Chia B., Laurensia Y., Lim J.Q., Yeoh K.W., Yao X.S., Pang W.L., et al. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia. 2018;32:1147–1156. doi: 10.1038/s41375-017-0004-x. PubMed DOI PMC

Bose S., Banerjee S., Mondal A., Chakraborty U., Pumarol J., Croley C., Bishayee A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells. 2020;9:1451. doi: 10.3390/cells9061451. PubMed DOI PMC

Kamran M.Z., Patil P., Gude R.P. Role of STAT3 in Cancer Metastasis and Translational Advances. BioMed Res. Int. 2013;2013:1–15. doi: 10.1155/2013/421821. PubMed DOI PMC

Guo Y., Pan W., Liu S., Shen Z., Xu Y., Hu L. ERK/MAPK signalling pathway and tumorigenesis (Review) Exp. Ther. Med. 2020;19:1997–2007. doi: 10.3892/etm.2020.8454. PubMed DOI PMC

Grivennikov S.I., Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–19. doi: 10.1016/j.cytogfr.2009.11.005. PubMed DOI PMC

Meier J.A., Larner A.C. Toward a new STATe: The role of STATs in mitochondrial function. Semin. Immunol. 2014;26:20–28. doi: 10.1016/j.smim.2013.12.005. PubMed DOI PMC

Meier J.A., Hyun M., Cantwell M., Raza A., Mertens C., Raje V., Sisler J., Tracy E., Torres-Odio S., Gispert S., et al. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci. Signal. 2017;10:eaag2588. doi: 10.1126/scisignal.aag2588. PubMed DOI PMC

Wang Y., Yu X., Song H., Feng D., Jiang Y., Wu S., Geng J. The STAT-ROS cycle extends IFN-induced cancer cell apoptosis. Int. J. Oncol. 2017;52:305–313. doi: 10.3892/ijo.2017.4196. PubMed DOI

Miklossy G., Hilliard T.S., Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 2013;12:611–629. doi: 10.1038/nrd4088. PubMed DOI PMC

Vašíček O., Fedr R., Skoroplyas S., Chalupa D., Sklenář M., Tharra P.R., Švenda J., Kubala L. Natural pseurotins and analogs thereof inhibit activation of B-cells and differentiation into the plasma cells. Phytomedicine. 2020;69:153194. doi: 10.1016/j.phymed.2020.153194. PubMed DOI

Ando O., Satake H., Nakajima M., Sato A., Nakamura T., Kinoshita T., Furuya K., Haneishi T. Synerazol, a new antifungal antibiotic. J. Antibiot. 1991;44:382–389. doi: 10.7164/antibiotics.44.382. PubMed DOI

Komagata D., Fujita S., Yamashita N., Saito S., Morino T. Novel Neuritogenic Activities of Pseurotin A and Penicillic Acid. J. Antibiot. 1996;49:958–959. doi: 10.7164/antibiotics.49.958. PubMed DOI

Asami Y., Kakeya H., Komi Y., Kojima S., Nishikawa K., Beebe K., Neckers L., Osada H. Azaspirene, a fungal product, inhibits angiogenesis by blocking Raf-1 activation. Cancer Sci. 2008;99:1853–1858. doi: 10.1111/j.1349-7006.2008.00890.x. PubMed DOI PMC

Igarashi Y., Yabuta Y., Sekine A., Fujii K., Harada K.-I., Oikawa T., Sato M., Furumai T., Oki T. Directed Biosynthesis of Fluorinated Pseurotin A, Synerazol and Gliotoxin. J. Antibiot. 2004;57:748–754. doi: 10.7164/antibiotics.57.748. PubMed DOI

Asami Y., Kakeya H., Onose R., Yoshida A., Matsuzaki A.H., Osada H. Azaspirene: A Novel Angiogenesis Inhibitor Containing a 1-Oxa-7-azaspiro [4.4]non-2-ene-4,6-dione Skeleton Produced by the FungusNeosartoryasp. Org. Lett. 2002;4:2845–2848. doi: 10.1021/ol020104+. PubMed DOI

Anjum K., Bi H., Chai W., Lian X.-Y., Zhang Z. Antiglioma pseurotin A from marine Bacillus sp. FS8D regulating tumour metabolic enzymes. Nat. Prod. Res. 2017;32:1353–1356. doi: 10.1080/14786419.2017.1343329. PubMed DOI

Vasicek O., Rubanova D., Chytkova B., Kubala L. Natural pseurotins inhibit proliferation and inflammatory responses through the inactivation of STAT signaling pathways in macrophages. Food Chem. Toxicol. 2020;141:111348. doi: 10.1016/j.fct.2020.111348. PubMed DOI

Rubanova D., Dadova P., Vasicek O., Kubala L. Pseurotin D Inhibits the Activation of Human Lymphocytes. Int. J. Mol. Sci. 2021;22:1938. doi: 10.3390/ijms22041938. PubMed DOI PMC

Moosova Z., Pekarova M., Sindlerova L.S., Vasicek O., Kubala L., Blaha L., Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI

Georgiev Y., Paulsen B.S., Kiyohara H., Ciz M., Ognyanov M., Vasicek O., Rise F., Denev P., Lojek A., Batsalova T., et al. Tilia tomentosa pectins exhibit dual mode of action on phagocytes as β-glucuronic acid monomers are abundant in their rhamnogalacturonans I. Carbohydr. Polym. 2017;175:178–191. doi: 10.1016/j.carbpol.2017.07.073. PubMed DOI

Kudová J., Vašíček O., Číž M., Kubala L. Melatonin promotes cardiomyogenesis of embryonic stem cells via inhibition of HIF-1α stabilization. J. Pineal Res. 2016;61:493–503. doi: 10.1111/jpi.12366. PubMed DOI

Binó L., Kučera J., Štefková K., Šindlerová L., Lánová M., Kudová J., Kubala L., Pacherník J. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem. Interact. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI

Vasicek O., Lojek A., Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J. Physiol. Biochem. 2020;76:49–60. doi: 10.1007/s13105-019-00714-3. PubMed DOI

Crowley L., Christensen M.E., Waterhouse N.J. Measuring Mitochondrial Transmembrane Potential by TMRE Staining. Cold Spring Harb. Protoc. 2016;2016 doi: 10.1101/pdb.prot087361. PubMed DOI

De Biasi S., Gibellini L., Bianchini E., Nasi M., Pinti M., Salvioli S., Cossarizza A. Quantification of Mitochondrial Reactive Oxygen Species in Living Cells by Using Multi-Laser Polychromatic Flow Cytometry. Cytom Part A. 2016;89a:1106–1110. doi: 10.1002/cyto.a.22936. PubMed DOI

Frezza C., Cipolat S., Scorrano L. Organelle isolation: Functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat. Protoc. 2007;2:287–295. doi: 10.1038/nprot.2006.478. PubMed DOI

Chen L., Gong M.-W., Peng Z.-F., Zhou T., Ying M.-G., Zheng Q.-H., Liu Q.-Y., Zhang Q.-Q. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway. Mar. Drugs. 2014;12:1939–1958. doi: 10.3390/md12041939. PubMed DOI PMC

Liu Y., Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem. Pharmacol. 2019;168:285–304. doi: 10.1016/j.bcp.2019.07.008. PubMed DOI

Li Y., Qin Y., Yang C., Zhang H., Li Y., Wu B., Huang J., Zhou X., Huang B., Yang K., et al. Cardamonin induces ROS-mediated G2/M phase arrest and apoptosis through inhibition of NF-κB pathway in nasopharyngeal carcinoma. Cell Death Dis. 2017;8:e3024. doi: 10.1038/cddis.2017.407. PubMed DOI PMC

Song M., Bode A.M., Dong Z., Lee M.-H. AKT as a Therapeutic Target for Cancer. Cancer Res. 2019;79:1019–1031. doi: 10.1158/0008-5472.CAN-18-2738. PubMed DOI

Nacarelli T., Azar A., Sell C. Aberrant mTOR activation in senescence and aging: A mitochondrial stress response? Exp. Gerontol. 2014;68:66–70. doi: 10.1016/j.exger.2014.11.004. PubMed DOI PMC

Lee H.B., Yu M.-R., Yang Y., Jiang Z., Ha H. Reactive Oxygen Species-Regulated Signaling Pathways in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2003;14:S241–S245. doi: 10.1097/01.ASN.0000077410.66390.0F. PubMed DOI

Kozlov A.V., Lancaster J.R., Meszaros A.T., Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 2017;13:170–181. doi: 10.1016/j.redox.2017.05.017. PubMed DOI PMC

Nolan A., Aboud N., Kolch W., Matallanas D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes. 2021;12:553. doi: 10.3390/genes12040553. PubMed DOI PMC

Taga M., Mouton-Liger F., Paquet C., Hugon J. Modulation of oxidative stress and tau phosphorylation by the mTOR activator phosphatidic acid in SH-SY5Y cells. FEBS Lett. 2011;585:1801–1806. doi: 10.1016/j.febslet.2011.04.022. PubMed DOI

Chen K., Qiu P., Yuan Y., Zheng L., He J., Wang C., Guo Q., Kenny J., Liu Q., Zhao J., et al. Pseurotin A Inhibits Osteoclastogenesis and Prevents Ovariectomized-Induced Bone Loss by Suppressing Reactive Oxygen Species. Theranostics. 2019;9:1634–1650. doi: 10.7150/thno.30206. PubMed DOI PMC

A Helal G., A Ahmed F., Askora A., Saber T.M., Rady S.M. PSEUROTIN A FROM Aspergillus fumigatus Fr. Aumc 8002 Exhibits anticancer activity against hepatocellular carcinoma in vitro and in vivo. Slov. Veter-Res. 2019;56 doi: 10.26873/SVR-610-2019. DOI

Abdelwahed K.S., Siddique A.B., Mohyeldin M.M., Qusa M.H., Goda A.A., Singh S.S., Ayoub N.M., King J.A., Jois S.D., El Sayed K.A. Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol. Res. 2020;158:104847. doi: 10.1016/j.phrs.2020.104847. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...