Nejvíce citovaný článek - PubMed ID 27613315
Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime
We studied concentrations of 34 essential and non-essential elements in samples of edible Bay Bolete (Imleria badia) mushrooms added by samples of the growing substrate and bioavailable fraction. The samples were collected from six forested sites affected differently by industrial pollution and underlain by compositionally contrasting bedrock: granite, amphibolite, and peridotite. In all cases, mushrooms behaved as a bioconcentrating system for elements such as Ag, K, P, Rb, S, and Se (BCF > 1) being a bioexcluding system for the rest of the elements analyzed (BCF < 1). Most analyzed elements displayed moderate to high within-mushroom mobility being accumulated preferably in the apical parts of the mushroom's fruiting body (TF > 1). The highest mobility was demonstrated by Cd and Cu. Sodium was the only element with significantly low mobility (TF < 1), and it accumulated preferably in the stipe. Imleria badia seems to be sensitive to the accumulation of elements such as As, Cd, and Pb from the atmospheric deposits. Specific geochemistry of the growing substrate was reflected to different extend in the accumulation of elements such as Ag, Cu, Rb, S, Al, Ca, Fe, Ba, and Na in the mushroom's fruiting bodies.
- Klíčová slova
- Bedrock, Mushroom, Soil, Trace elements, Translocation, Uptake,
- MeSH
- Agaricales * chemie MeSH
- monitorování životního prostředí MeSH
- stopové prvky * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- stopové prvky * MeSH
Boletus edulis mushroom behaved as an accumulating biosystem with respect to Ag, Rb, Zn, and K. The mushroom was not an efficient accumulator of toxic As, Pb, and Cr, but Se and Cd displayed much higher concentrations in the mushroom than in the substrate samples. Other elements were bioexclusive. Different elements had different within-mushroom mobilities. The highest mobilities were displayed by Zn and Ag, and the lowest by Ti. The mushroom's fruiting body preferentially took up lighter Mg, Cu, and Cd isotopes (Δ26MgFB-soil = -0.75‰; Δ65CuFB-soil = -0.96‰; Δ114CdFB-soil = -0.63‰), and the heavier 66Zn isotope (Δ66ZnFB-soil = 0.92‰). Positive within-mushroom Zn isotope fractionation resulted in accumulation of the heavier 66Zn (Δ66Zncap-stipe = 0.12‰) in the mushroom's upper parts. Cadmium displayed virtually no within-mushroom isotope fractionation. Different parts of the fruiting body fractionated Mg and Cu isotopes differently. The middle part of the stipe (3-6 cm) was strongly depleted in the heavier 26 Mg with respect to the 0-3 cm (Δ26Mgstipe(3-6)-stipe(0-3) = -0.73‰) and 6-9 cm (Δ26Mgstipe(6-9)-stipe(3-6) = 0.28‰) sections. The same stipe part was strongly enriched in the heavier 65Cu with respect to the 0-3 cm (Δ65Custipe(3-6)-stipe(0-3) = 0.63‰) and 6-9 cm (Δ65Custipe(6-9)-stipe(3-6) = -0.42‰) sections. An overall tendency for the upper mushroom's parts to accumulate heavier isotopes was noted for Mg (Δ26Mgcap-stipe = 0.20‰), Zn (Δ66Zncap-stipe = 0.12‰), and Cd (Δ114Cdcap-stipe = 0.04‰), whereas Cu showed the opposite trend (Δ65Cucap-stipe = -0.08‰).
- Klíčová slova
- Fruiting body, Mushroom, Non-traditional stable isotopes, Soil, Trace elements, Translocation,
- MeSH
- Agaricales * MeSH
- Basidiomycota MeSH
- izotopy analýza MeSH
- kadmium MeSH
- látky znečišťující půdu * analýza MeSH
- půda MeSH
- zinek analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- izotopy MeSH
- kadmium MeSH
- látky znečišťující půdu * MeSH
- půda MeSH
- zinek MeSH