Most cited article - PubMed ID 27625363
Distinct bilineal leukemia immunophenotypes are not genetically determined
Leukemias harboring the ETV6-ABL1 fusion represent a rare subset of hematological malignancies with unfavorable outcomes. The constitutively active chimeric Etv6-Abl1 tyrosine kinase can be specifically inhibited by tyrosine kinase inhibitors (TKIs). Although TKIs represent an important therapeutic tool, so far, the mechanism underlying the potential TKI resistance in ETV6-ABL1-positive malignancies has not been studied in detail. To address this issue, we established a TKI-resistant ETV6-ABL1-positive leukemic cell line through long-term exposure to imatinib. ETV6-ABL1-dependent mechanisms (including fusion gene/protein mutation, amplification, enhanced expression or phosphorylation) and increased TKI efflux were excluded as potential causes of resistance. We showed that TKI effectively inhibited the Etv6-Abl1 kinase activity in resistant cells, and using short hairpin RNA (shRNA)-mediated silencing, we confirmed that the resistant cells became independent from the ETV6-ABL1 oncogene. Through analysis of the genomic and proteomic profiles of resistant cells, we identified an acquired mutation in the GNB1 gene, K89M, as the most likely cause of the resistance. We showed that cells harboring mutated GNB1 were capable of restoring signaling through the phosphoinositide-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, whose activation is inhibited by TKI. This alternative GNB1K89M-mediated pro-survival signaling rendered ETV6-ABL1-positive leukemic cells resistant to TKI therapy. The mechanism of TKI resistance is independent of the targeted chimeric kinase and thus is potentially relevant not only to ETV6-ABL1-positive leukemias but also to a wider spectrum of malignancies treated by kinase inhibitors.
- MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Oncogene Proteins, Fusion genetics MeSH
- Imatinib Mesylate administration & dosage MeSH
- Protein Kinase Inhibitors administration & dosage MeSH
- Leukemia drug therapy genetics pathology MeSH
- Humans MeSH
- RNA, Small Interfering genetics MeSH
- Mutation MeSH
- Cell Line, Tumor MeSH
- GTP-Binding Protein beta Subunits genetics MeSH
- Signal Transduction drug effects MeSH
- Protein-Tyrosine Kinases genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Oncogene Proteins, Fusion MeSH
- GNB1 protein, human MeSH Browser
- Imatinib Mesylate MeSH
- Protein Kinase Inhibitors MeSH
- RNA, Small Interfering MeSH
- GTP-Binding Protein beta Subunits MeSH
- TEL-ABL fusion protein, human MeSH Browser
- Protein-Tyrosine Kinases MeSH
Acute lymphoblastic leukemia (ALL) is the most common malignancy in childhood. Despite enormous improvement of prognosis during the last half century, ALL remains a major cause of childhood cancer-related mortality. During the past decade, whole genomic methods have enhanced our knowledge of disease biology. Stratification of therapy according to early treatment response measured by minimal residual disease allows risk group assignment into different treatment arms, ranging from reduction to intensification of treatment. Progress has been achieved in academic clinical trials by optimization of combined chemotherapy, which continues to be the mainstay of contemporary treatment. The availability of suitable volunteer main histocompatibility antigen-matched unrelated donors has increased the rates of hematopoietic stem cell transplantation (HSCT) over the past two decades. Allogeneic HSCT has become an alternative treatment for selected, very-high-risk patients. However, intensive treatment burdens children with severe acute toxic effects that can cause permanent organ damage and even toxic death. Immunotherapeutic approaches have recently come to the forefront in ALL therapy. Monoclonal antibodies blinatumomab and inotuzumab ozogamicin as well as gene-modified T cells directed to specific target antigens have shown efficacy against resistant/relapsed leukemia in phase I/II studies. Integration of these newer modalities into combined regimens with chemotherapy may rescue a subset of children not curable by contemporary therapy. Another major challenge will be to incorporate less toxic regimens into the therapy of patients with low-risk disease who have a nearly 100% chance of being cured, and the ultimate goal is to improve their quality of life while maintaining a high cure rate.
- Keywords
- ALL, HSCT, immunotherapy, leukaemia, monoclonal antibodies, paediatric,
- Publication type
- Journal Article MeSH
- Review MeSH