Nejvíce citovaný článek - PubMed ID 27934171
ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor-Solid Mechanism and Their Photocatalytic and Gas Sensing Properties
Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122 to 135 and 145 for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.
- Klíčová slova
- AACVD, copper oxide, iron oxide, structured films, water contact angle, zinc oxide,
- Publikační typ
- časopisecké články MeSH
Whilst columnar zinc oxide (ZnO) structures in the form of rods or wires have been synthesized previously by different liquid- or vapor-phase routes, their high cost production and/or incompatibility with microfabrication technologies, due to the use of pre-deposited catalyst-seeds and/or high processing temperatures exceeding 900 °C, represent a drawback for a widespread use of these methods. Here, however, we report the synthesis of ZnO rods via a non-catalyzed vapor-solid mechanism enabled by using an aerosol-assisted chemical vapor deposition (CVD) method at 400 °C with zinc chloride (ZnCl2) as the precursor and ethanol as the carrier solvent. This method provides both single-step formation of ZnO rods and the possibility of their direct integration with various substrate types, including silicon, silicon-based micromachined platforms, quartz, or high heat resistant polymers. This potentially facilitates the use of this method at a large-scale, due to its compatibility with state-of-the-art microfabrication processes for device manufacture. This report also describes the properties of these structures (e.g., morphology, crystalline phase, optical band gap, chemical composition, electrical resistance) and validates its gas sensing functionality towards carbon monoxide.
- MeSH
- aerosoly MeSH
- katalýza MeSH
- oxid zinečnatý chemie MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- oxid zinečnatý MeSH