Most cited article - PubMed ID 28031879
Photodynamic therapy and imaging based on tumor-targeted nanoprobe, polymer-conjugated zinc protoporphyrin
Background: Efficient theranostic strategies concurrently bring and use both the therapeutic and diagnostic features, serving as a cutting-edge tool to combat advanced cancers. Goals of the Investigation: Here, we develop stimuli-sensitive theranostics consisting of tailored copolymers forming micellar conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds, thus enabling the tumor microenvironment-sensitive activation of the photodynamic therapy (PDT) effect, fluorescence or phosphorescence. Results: The nanomedicines show superior anti-tumor PDT efficacy and huge tumor-imaging potential, while reducing their accumulation, and potentially side effects, in the liver and spleen. The developed theranostics exhibit clear selective tumor accumulation at high levels in the mouse sarcoma S180 tumor model with almost no PyF found in the healthy tissues after 48 h. Once in the tumor, illumination at λexc = 420 nm reaches the therapeutic effect due to the 1O2 generation. Indeed, an almost complete inhibition of tumor growth is observed up to 18 days after the treatment. Conclusion: The clear benefit of the specific PyF release and activation in the acidic tumor environment for the targeted delivery and tissue distribution dynamics was proved. Conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds showed their excellent antitumor PDT effect and its applicability as advanced theranostics at very low dose of PyF.
- Keywords
- HPMA polymers, fluorescence imaging, pH-responsive theranostics, photodynamic therapy, tumor-targeted nanomedicines,
- MeSH
- Photochemotherapy * methods MeSH
- Photosensitizing Agents therapeutic use MeSH
- Hydrazones therapeutic use MeSH
- Precision Medicine MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Tumor Microenvironment MeSH
- Neoplasms * diagnostic imaging drug therapy pathology MeSH
- Polymers chemistry MeSH
- Theranostic Nanomedicine methods MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Photosensitizing Agents MeSH
- Hydrazones MeSH
- Polymers MeSH
The presented work addresses the influence of illumination intensity on the amount and locations of singlet oxygen generation in tumor tissue. We used time-resolved optical detection at the typical emission wavelength around 1270 nm and at 1200 nm where there is no singlet oxygen phosphorescence to determine the phosphorescence kinetics. The discussed data comprise in vivo measurements in tumor-laden HET-CAM and mice. The results show that illumination that is too intense is a major issue, affecting many PDT treatments and all singlet oxygen measurements in vivo so far. In such cases, photosensitization and oxygen consumption exceed oxygen supply, limiting singlet oxygen generation to the blood vessels and walls, while photosensitizers in the surrounding tissue will likely not participate. Being a limitation for the treatment, on one hand, on the other, this finding offers a new method for tumor diagnosis when using photosensitizers exploiting the EPR effect. In contrast to high-intensity PDT, some papers reported successful treatment with nanoparticular drugs using much lower illumination intensity. The question of whether, with such illumination, singlet oxygen is indeed generated in areas apart from vessels and walls, is addressed by numerical analysis. In addition, we discuss how to perform measurements at such low intensities.
- Keywords
- illumination intensity, photodynamic therapy, singlet oxygen, time-resolved phosphorescence,
- Publication type
- Journal Article MeSH
Nanomedicine allows achievement of tumor-selective drug delivery because of the enhanced permeability and retention (EPR) effect of solid tumors. We report here the first clinical application of a new agent-HPMA copolymer-conjugated pirarubicin (P-THP)-with a molecular size of about 8 nm, or 38.5 kDa. A patient had advanced prostate cancer with multiple metastases in the lung, pelvis, femur, and perhaps the sacrum. In April 2013, this 60-year-old patient started treatment with leuprorelin and estradiol, which continued until July 2014, but the patient became refractory to this treatment. So the patient underwent proton beam radiotherapy targeted to the primary prostate cancer, and P-THP was administered for numerous metastatic tumor nodules concomitantly with radiotherapy. This combination therapy had remarkable results, with complete remission of multiple metastases in the lung and bone. The prostate-specific antigen (PSA) value was decreased from about 1000 ng/mL on April 30, 2013, to about 100 ng/mL on June 24, 2013, with hormone therapy, but rose again to 964.2 ng/mL and then to 1472 ng/mL in July 2013, during leuprorelin administration. P-THP treatment administered concomitantly with proton beam irradiation was started in August 2013. The PSA value was decreased to 102 ng/mL on August 26, 2013, and then to 0.971 ng/mL on October 8, 2013, and 0.277 ng/mL on January 15, 2015. The P-THP doses ranged from 30 to 75 mg of free THP equivalent/patient every 2-3 weeks without signs of serious toxicity, such as cardiovascular side effects or a reduction in quality of life. No evidence of relapse was found more than 20 months after P-THP administration. This case demonstrates the value of hydrazone-bonded polymeric drugs in multimodal therapy.
- MeSH
- Doxorubicin analogs & derivatives therapeutic use MeSH
- Combined Modality Therapy MeSH
- Drug Delivery Systems * MeSH
- Middle Aged MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Bone Neoplasms secondary therapy MeSH
- Lung Neoplasms secondary therapy MeSH
- Prostatic Neoplasms pathology therapy MeSH
- Prognosis MeSH
- Antineoplastic Agents therapeutic use MeSH
- Neoplasm Staging MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Doxorubicin MeSH
- hydroxypropyl methacrylate MeSH Browser
- Methacrylates MeSH
- pirarubicin MeSH Browser
- Antineoplastic Agents MeSH