Nejvíce citovaný článek - PubMed ID 28095287
Nanomaterials - a New and Former Public Health Issue. The Case of Slovakia
OBJECTIVES: Due to nano-dimensions (less than 100 nm), can nanoparticles probably penetrate through various membranes and travel from the bloodstream to other organs in the body. The aim of our study was to find out whether NPs Fe3O4 (coated with sodium oleate) injected into the tail vein of laboratory Wistar rats pass through the bloodstream to the respiratory tract (in comparison with a control group); and if so whether increasing doses of NPs Fe3O4 have an escalating harmful effect on selected bronchoalveolar lavage (BAL) parameters. METHODS: Wistar rats were intravenously given 3 doses of the suspension of NPs Fe3O4 (0.1% LD50 = 0.0364, 1.0% = 0.364 and 10.0% = 3.64 mg/kg animal body weight). Seven days later, we sacrificed the animals under anaesthesia, performed bronchoalveolar lavage (BAL), and isolated the collected cells. Many inflammatory and cytotoxic BAL parameters were examined. RESULTS: Both inflammatory and cytotoxic BAL parameters affected by Fe3O4 suspension were changed compared to control results, but not all were statistically significant. Thus, the NPs Fe3O4 passed through the bloodstream to the respiratory tract and affected it. The highest concentration of NPs Fe3O4 (10%) had the most influence on BAL parameters (7 of 12 parameters). Only 3 parameters showed a pure dose dependence. CONCLUSION: We assume that the adverse effect of Fe3O4 NPs in our study is probably not correlated with the dose, but rather with the size of the particles or with their surface area.
- Klíčová slova
- bronchoalveolar lavage, dose dependence, inflammatory and cytotoxic parameters, nanoparticles,
- MeSH
- bronchoalveolární laváž MeSH
- bronchoalveolární lavážní tekutina MeSH
- intravenózní podání MeSH
- krysa rodu Rattus MeSH
- nanočástice * MeSH
- oxid železnato-železitý * MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid železnato-železitý * MeSH
Researchers in nanocomposite processing may inhale a variety of chemical agents, including nanoparticles. This study investigated airway oxidative stress status in the exhaled breath condensate (EBC). Nineteen employees (42.4 ± 11.4 y/o), working in nanocomposites research for 18.0 ± 10.3 years were examined pre-shift and post-shift on a random workday, together with nineteen controls (45.5 ± 11.7 y/o). Panels of oxidative stress biomarkers derived from lipids, nucleic acids, and proteins were analyzed in the EBC. Aerosol exposures were monitored during three major nanoparticle generation operations: smelting and welding (workshop 1) and nanocomposite machining (workshop 2) using a suite of real-time and integrated instruments. Mass concentrations during these operations were 0.120, 1.840, and 0.804 mg/m³, respectively. Median particle number concentrations were 4.8 × 10⁴, 1.3 × 10⁵, and 5.4 × 10⁵ particles/cm³, respectively. Nanoparticles accounted for 95, 40, and 61%, respectively, with prevailing Fe and Mn. All markers of nucleic acid and protein oxidation, malondialdehyde, and aldehydes C₆⁻C13 were elevated, already in the pre-shift samples relative to controls in both workshops. Significant post-shift elevations were documented in lipid oxidation markers. Significant associations were found between working in nanocomposite synthesis and EBC biomarkers. More research is needed to understand the contribution of nanoparticles from nanocomposite processing in inducing oxidative stress, relative to other co-exposures generated during welding, smelting, and secondary oxidation processes, in these workshops.
- Klíčová slova
- exhaled breath condensate, inhalation, nanocomposites, nanoparticles, occupational exposure, oxidative stress, workers,
- Publikační typ
- časopisecké články MeSH