Most cited article - PubMed ID 28123091
Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge
Oxidative stress occurs when the levels of reactive oxygen species (ROS) overcome the antioxidant defenses of the organism, jeopardizing several biological functions, including reproduction. In the male reproductive system, oxidative stress not only impairs sperm fertility but also compromises offspring health and survival, inducing oxidative damage to lipids, proteins and nucleic acids. Although a clear link between oxidative stress and male fertility disorders has been demonstrated in humans and laboratory rodents, little information is available about the implications of impaired redox homeostasis in the male fertility of domestic and wild animals. Therefore, this review aims to provide an update regarding the intrinsic and extrinsic factors that are associated with oxidative stress in the male reproductive system and their impact on the reproductive performance of domestic and wild animals. The most recent strategies for palliating the detrimental effects of oxidative stress on male fertility are reviewed together with their potential economic and ecological implications in the livestock industry and biodiversity conservation.
- Keywords
- ROS, antioxidant, infertility, livestock, semen, sperm dysfunction, wildlife,
- Publication type
- Journal Article MeSH
- Review MeSH
It has been hypothesized that carotenoid-based sexual ornamentation signals male fertility and sperm competitive ability as both ornamentation and sperm traits may be co-affected by oxidative stress, resulting in positive covariation (the 'redox-based phenotype-linked fertility hypothesis'; redox-based PLFH). On the other hand, the 'sperm competition theory' (SCT) predicts a trade-off between precopulatory and postcopulatory traits. Here, we manipulate oxidative status (using diquat dibromide) and carotenoid availability in adult zebra finch (Taeniopygia guttata) males in order to test whether carotenoid-based beak ornamentation signals, or is traded off against, sperm resistance to oxidative challenge. Initial beak colouration, but not its change during the experiment, was associated with effect of oxidative challenge on sperm velocity, such that more intense colouration predicted an increase in sperm velocity under control conditions but a decline under oxidative challenge. This suggests a long-term trade-off between ornament expression and sperm resistance to oxidative challenge. Shortening of the sperm midpiece following oxidative challenge further suggests that redox homeostasis may constrain sperm morphometry. Carotenoid supplementation resulted in fewer sperm abnormalities but had no effect on other sperm traits. Overall, our data challenge the redox-based PLFH, partially support the SCT and highlight the importance of carotenoids for normal sperm morphology.
- Keywords
- ejaculate quality, lutein, phenotype-linked fertility hypothesis, sexual selection, sperm competition theory, zeaxanthin,
- MeSH
- Carotenoids physiology MeSH
- Oxidative Stress * MeSH
- Pigmentation * MeSH
- Spermatozoa physiology MeSH
- Beak MeSH
- Songbirds physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids MeSH