Most cited article - PubMed ID 28276133
Plasmid-mediated resistance to cephalosporins and quinolones in Escherichia coli from American crows in the USA
Wild corvids were examined for the presence of carbapenemase-producing Gram-negative bacteria in the United States. A total of 13 isolates were detected among 590 fecal samples of American crow; 11 Providencia rettgeri isolates harboring blaIMP-27 on the chromosome as a class 2 integron gene cassette within the Tn7 transposon, 1 Klebsiella pneumoniae ST258 isolate carrying blaKPC-2 on a pKpQIL-like plasmid as a part of Tn4401a, and 1 Enterobacter bugandensis isolate with blaIMI-1 located within EcloIMEX-2.
- Keywords
- IMI, IMP-27, KPC, Providencia rettgeri, carbapenemase, wild birds,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacterial Proteins genetics MeSH
- beta-Lactamases genetics MeSH
- Enterobacter MeSH
- Klebsiella Infections * MeSH
- Klebsiella pneumoniae genetics MeSH
- Microbial Sensitivity Tests MeSH
- Plasmids genetics MeSH
- Providencia MeSH
- Crows * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- United States MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins MeSH
- beta-Lactamases MeSH
- carbapenemase MeSH Browser
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating blaCMY-2 in Australia, I1/ST113 carrying blaCTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying blaCMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
- Keywords
- AmpC, ESBL, ExPEC, I1 plasmids, ST457,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- beta-Lactamases genetics MeSH
- beta-Lactams MeSH
- Animals, Wild MeSH
- Escherichia coli * genetics MeSH
- Phylogeny MeSH
- Escherichia coli Infections * veterinary MeSH
- Humans MeSH
- Plasmids genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Australia MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- beta-Lactamases MeSH
- beta-Lactams MeSH
We present here the complete genome sequence of Escherichia coli MT102, which is resistant to rifampin, azide, and streptomycin and is used as a recipient in plasmid transfer experiments. The sequence will be utilized for chromosomal read removal in plasmid sequence analyses obtained from transconjugants within this strain and in comprehensive genetic studies.
- Publication type
- Journal Article MeSH
Escherichia coli sequence type 131 (ST131) is currently one of the leading causes of multidrug-resistant extraintestinal infections globally. Here, we analyzed the phenotypic and genotypic characteristics of 169 ST131 isolates from various sources (wildlife, wastewater, companion animals, community, and hospitals) to determine whether wildlife and the environment share similar strains with humans, supporting transmission of ST131 between different ecological niches. Susceptibility to 32 antimicrobials was tested by disc diffusion and broth microdilution. Antibiotic resistance genes, integrons, plasmid replicons, 52 virulence genes, and fimH-based subtypes were detected by PCR and DNA sequencing. Genomic relatedness was determined by pulsed-field gel electrophoresis (PFGE). The genetic context and plasmid versus chromosomal location of extended-spectrum beta-lactamase and AmpC beta-lactamase genes was determined by PCR and probe hybridization, respectively. The 169 ST131 study isolates segregated predominantly into blaCTX-M-15H30Rx (60%) and blaCTX-M-27H30R1 (25%) subclones. Within each subclone, isolates from different source groups were categorized into distinct PFGE clusters; genotypic characteristics were fairly well conserved within each major PFGE cluster. Irrespective of source, the blaCTX-M-15H30Rx isolates typically exhibited virotype A (89%), an F2:A1:B- replicon (84%), and a 1.7-kb class 1 integron (92%) and had diverse structures upstream of the blaCTX-M region. In contrast, the blaCTX-M-27H30R1 isolates typically exhibited virotype C (86%), an F1:A2:B20 replicon (76%), and a conserved IS26-ΔISEcp1-blaCTX-M-like structure. Despite considerable overall genetic diversity, our data demonstrate significant commonality between E. coli ST131 isolates from diverse environments, supporting transmission between different sources, including humans, environment, and wildlife.
- Keywords
- ESBL, Escherichia coli ST131, environment, nosocomial and community-acquired infections, virulence, wildlife,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- beta-Lactamases genetics MeSH
- Escherichia coli drug effects genetics MeSH
- Escherichia coli Infections genetics microbiology MeSH
- Community-Acquired Infections genetics microbiology MeSH
- Humans MeSH
- Drug Resistance, Multiple, Bacterial genetics MeSH
- Plasmids genetics MeSH
- Escherichia coli Proteins genetics MeSH
- Electrophoresis, Gel, Pulsed-Field MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- beta-Lactamases MeSH
- Escherichia coli Proteins MeSH