Most cited article - PubMed ID 28323424
Toward a Comprehensive Global Emission Inventory of C4-C10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C8-Based Products and Ongoing Industrial Transition
It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.
- Keywords
- PFAS, chemical pollution, environmental exposure, planetary boundary,
- MeSH
- Water Pollutants, Chemical * analysis MeSH
- Fluorocarbons * analysis MeSH
- Alkanesulfonic Acids * MeSH
- Drinking Water * MeSH
- Soil MeSH
- Environmental Exposure MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- Fluorocarbons * MeSH
- Alkanesulfonic Acids * MeSH
- Drinking Water * MeSH
- Soil MeSH
Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.
- MeSH
- Fluorocarbons * MeSH
- Environmental Pollutants * MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Environmental Exposure prevention & control MeSH
- Environmental Pollution prevention & control MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fluorocarbons * MeSH
- Environmental Pollutants * MeSH