Nejvíce citovaný článek - PubMed ID 28394576
Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS2 for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide
Additive manufacturing technology, referred as 3D printing technology, is a growing research field with broad applications from nanosensors fabrication to 3D printing of buildings. Nowadays, the world is dealing with a pandemic and requires the use of simple sensing systems. Here, the strengths of fast screening by a lab-on-a-chip device through electrochemical detection using 3D printing technology for SARS-CoV-2 sensing are combined. This system comprises a PDMS microfluidic channel integrated with an electrochemical cell fully 3D-printed by a 3D printing pen (3D-PP). The 3D-PP genosensor is modified with an ssDNA probe that targeted the N gene sequence of SARS-CoV-2. The sensing mechanism relies on the electro-oxidation of adenines present in ssDNA when in contact with SARS-CoV-2 RNA. The hybridization between ssDNA and target RNA takes a place and ssDNA is desorbed from the genosensor surface, causing a decrease of the sensor signal. The developed SARS-CoV-2/3D-PP genosensor shows high sensitivity and fast response.
- Klíčová slova
- additive manufacturing, electroanalysis, lab on chip, nucleic acid,
- Publikační typ
- časopisecké články MeSH