Nejvíce citovaný článek - PubMed ID 28765607
BACKGROUND: Myelodysplastic neoplasms (MDS) are heterogeneous hematopoietic disorders characterized by ineffective hematopoiesis and genome instability. Mobilization of transposable elements (TEs) is an important source of genome instability leading to oncogenesis, whereas small PIWI-interacting RNAs (piRNAs) act as cellular suppressors of TEs. However, the roles of TEs and piRNAs in MDS remain unclear. METHODS: In this study, we examined TE and piRNA expression through parallel RNA and small RNA sequencing of CD34+ hematopoietic stem cells from MDS patients. RESULTS: Comparative analysis of TE and piRNA expression between MDS and control samples revealed several significantly dysregulated molecules. However, significant differences were observed between lower-risk MDS (LR-MDS) and higher-risk MDS (HR-MDS) samples. In HR-MDS, we found an inverse correlation between decreased TE levels and increased piRNA expression and these TE and piRNA levels were significantly associated with patient outcomes. Importantly, the upregulation of PIWIL2, which encodes a key factor in the piRNA pathway, independently predicted poor prognosis in MDS patients, underscoring its potential as a valuable disease marker. Furthermore, pathway analysis of RNA sequencing data revealed that dysregulation of the TE‒piRNA axis is linked to the suppression of processes related to energy metabolism, the cell cycle, and the immune response, suggesting that these disruptions significantly affect cellular activity. CONCLUSIONS: Our findings demonstrate the parallel dysregulation of TEs and piRNAs in HR-MDS patients, highlighting their potential role in MDS progression and indicating that the PIWIL2 level is a promising molecular marker for prognosis.
- Klíčová slova
- Bioinformatics, Biomarkers, Myelodysplastic neoplasms, Next-generation sequencing, Transposable elements, piRNA,
- Publikační typ
- časopisecké články MeSH
BACKGROUND/AIM: Prediction of response to azacitidine (AZA) treatment is an important challenge in hematooncology. In addition to protein coding genes (PCGs), AZA efficiency is influenced by various noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and transposable elements (TEs). MATERIALS AND METHODS: RNA sequencing was performed in patients with myelodysplastic syndromes or acute myeloid leukemia before AZA treatment to assess contribution of ncRNAs to AZA mechanisms and propose novel disease prediction biomarkers. RESULTS: Our analyses showed that lncRNAs had the strongest predictive potential. The combined set of the best predictors included 14 lncRNAs, and only four PCGs, one circRNA, and no TEs. Epigenetic regulation and recombinational repair were suggested as crucial for AZA response, and network modeling defined three deregulated lncRNAs (CTC-482H14.5, RP11-419K12.2, and RP11-736I24.4) associated with these processes. CONCLUSION: The expression of various ncRNAs can influence the effect of AZA and new ncRNA-based predictive biomarkers can be defined.
- Klíčová slova
- Noncoding RNAs, acute myeloid leukemia, azacytidine, circular RNAs, myelodysplastic syndrome, transposable elements,
- MeSH
- akutní myeloidní leukemie * farmakoterapie genetika MeSH
- azacytidin farmakologie terapeutické užití MeSH
- epigeneze genetická MeSH
- lidé MeSH
- myelodysplastické syndromy * farmakoterapie genetika MeSH
- RNA dlouhá nekódující * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azacytidin MeSH
- RNA dlouhá nekódující * MeSH