Nejvíce citovaný článek - PubMed ID 28778622
Integrity of head and tail plasmalemma is associated with different kinetic variables in boar sperm
Hydrogen sulphide (H2S) is involved in the physiology and pathophysiology of different cell types, but little is known about its role in sperm cells. Because of its reducing properties, we hypothesise that H2S protects spermatozoa against the deleterious effects of oxidative stress, a condition that is common to several male fertility disorders. This study aimed i) to determine the total antioxidant capacities of Na2S and GYY4137, which are fast- and slow-releasing H2S donors, respectively, and ii) to test whether H2S donors are able to protect spermatozoa against oxidative stress. We found that Na2S and GYY4137 show different antioxidant properties, with the total antioxidant capacity of Na2S being mostly unstable and even undetectable at 150 µM. Moreover, both H2S donors preserve sperm motility and reduce acrosome loss, although the effects were both dose and donor dependent. Within the range of concentrations tested (3-300 µM), GYY4137 showed positive effects on sperm motility, whereas Na2S was beneficial at the lowest concentration but detrimental at the highest. Our findings show that Na2S and GYY4137 have different antioxidant properties and suggest that both H2S donors might be used as in vitro therapeutic agents against oxidative stress in sperm cells, although the optimal therapeutic range differs between the compounds.
- MeSH
- antioxidancia farmakologie MeSH
- lidé MeSH
- morfoliny farmakologie MeSH
- motilita spermií účinky léků MeSH
- organothiofosforové sloučeniny farmakologie MeSH
- oxidační stres účinky léků MeSH
- prasata MeSH
- spermie účinky léků MeSH
- sulfan metabolismus MeSH
- sulfidy farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- GYY 4137 MeSH Prohlížeč
- morfoliny MeSH
- organothiofosforové sloučeniny MeSH
- sodium sulfide MeSH Prohlížeč
- sulfan MeSH
- sulfidy MeSH
In recent decades, an increasing number of ethnopharmacological studies have been dedicated to medicinal plants from South African fynbos. Among these plants, honeybush (Cyclopia spp.) has become a popular tea, mainly due to its healthy properties and caffeine-free status. The antioxidant, antimutagenic, and antimicrobial properties of this plant have been reported in several cell types, but its effects on reproductive function are still unknown. Here, we assessed the effects of honeybush (Cyclopia intermedia) on boar sperm parameters under induced oxidative stress (Fe2+/ascorbate) and during five days of semen storage at 17 °C without oxidative stress. In both experiments, four concentrations (200, 50, 12.5, and 3.125 µg/mL) of fermented honeybush were tested. Our results show that honeybush enhances sperm parameters, and no toxic effects were observed at any of the tested extract concentrations. Interestingly, honeybush (12.5 µg/mL) improved the sperm motility and kinetic parameters, preserved the plasma membrane integrity, and reduced the lipid peroxidation in the samples exposed to Fe2+/ascorbate (p < 0.05). In the stored samples, positive effects of honeybush on sperm parameters (motility, kinetics, acrosome, and mitochondria) were observed from 48 h until 120 h of semen storage (p < 0.05). Our results clearly show the protective effects of honeybush on sperm samples, thus promoting its use as a natural source of antioxidants for boar semen.
- Klíčová slova
- Cyclopia intermedia, lipid peroxidation, oxidative stress, semen storage, sperm function,
- Publikační typ
- časopisecké články MeSH
Aminoguanidine is a selective inhibitor of the inducible nitric oxide synthase (iNOS) and a scavenger of reactive oxygen species (ROS). Numerous studies have shown the antioxidant properties of aminoguanidine in several cell lines, but the in vitro effects of this compound on spermatozoa under oxidative stress are unknown. In this study, we tested the hypothesis that aminoguanidine may protect against the detrimental effects of oxidative stress in boar spermatozoa. For this purpose, sperm samples were incubated with a ROS generating system (Fe2+/ascorbate) with or without aminoguanidine supplementation (10, 1, and 0.1 mM). Our results show that aminoguanidine has powerful antioxidant capacity and protects boar spermatozoa against the deleterious effects of oxidative stress. After 2 h and 3.5 h of sperm incubation, the samples treated with aminoguanidine showed a significant increase in sperm velocity, plasma membrane and acrosome integrity together with a reduced lipid peroxidation in comparison with control samples (p < 0.001). Interestingly, except for the levels of malondialdehyde, the samples treated with 1 mM aminoguanidine did not differ or showed better performance than control samples without Fe2+/ascorbate. The results from this study provide new insights into the application of aminoguanidine as an in vitro therapeutic agent against the detrimental effects of oxidative stress in semen samples.
- Klíčová slova
- antioxidant capacity, lipid peroxidation, nitric oxide, oxidative stress, sperm velocity,
- Publikační typ
- časopisecké články MeSH