Nejvíce citovaný článek - PubMed ID 28970792
Parkinson Disease Detection from Speech Articulation Neuromechanics
Hypokinetic dysarthria (HD) is a difficult-to-treat symptom affecting quality of life in patients with Parkinson's disease (PD). Levodopa may partially alleviate some symptoms of HD in PD, but the neural correlates of these effects are not fully understood. The aim of our study was to identify neural mechanisms by which levodopa affects articulation and prosody in patients with PD. Altogether 20 PD patients participated in a task fMRI study (overt sentence reading). Using a single dose of levodopa after an overnight withdrawal of dopaminergic medication, levodopa-induced BOLD signal changes within the articulatory pathway (in regions of interest; ROIs) were studied. We also correlated levodopa-induced BOLD signal changes with the changes in acoustic parameters of speech. We observed no significant changes in acoustic parameters due to acute levodopa administration. After levodopa administration as compared to the OFF dopaminergic condition, patients showed task-induced BOLD signal decreases in the left ventral thalamus (p = 0.0033). The changes in thalamic activation were associated with changes in pitch variation (R = 0.67, p = 0.006), while the changes in caudate nucleus activation were related to changes in the second formant variability which evaluates precise articulation (R = 0.70, p = 0.003). The results are in line with the notion that levodopa does not have a major impact on HD in PD, but it may induce neural changes within the basal ganglia circuitries that are related to changes in speech prosody and articulation.
- Klíčová slova
- Hypokinetic dysarthria, Levodopa, Parkinson’s disease, Task fMRI,
- MeSH
- antiparkinsonika škodlivé účinky MeSH
- dysartrie etiologie komplikace MeSH
- kvalita života MeSH
- levodopa * škodlivé účinky MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- Parkinsonova nemoc * komplikace diagnostické zobrazování farmakoterapie MeSH
- poruchy řeči diagnostické zobrazování etiologie MeSH
- řeč fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiparkinsonika MeSH
- levodopa * MeSH
BACKGROUND AND OBJECTIVE: An aging society requires easy-to-use approaches for diagnosis and monitoring of neurodegenerative disorders, such as Parkinson's disease (PD), so that clinicians can effectively adjust a treatment policy and improve patients' quality of life. Current methods of PD diagnosis and monitoring usually require the patients to come to a hospital, where they undergo several neurological and neuropsychological examinations. These examinations are usually time-consuming, expensive, and performed just a few times per year. Hence, this study explores the possibility of fusing computerized analysis of hypomimia and hypokinetic dysarthria (two motor symptoms manifested in the majority of PD patients) with the goal of proposing a new methodology of PD diagnosis that could be easily integrated into mHealth systems. METHODS: We enrolled 73 PD patients and 46 age- and gender-matched healthy controls, who performed several speech/voice tasks while recorded by a microphone and a camera. Acoustic signals were parametrized in the fields of phonation, articulation and prosody. Video recordings of a face were analyzed in terms of facial landmarks movement. Both modalities were consequently modeled by the XGBoost algorithm. RESULTS: The acoustic analysis enabled diagnosis of PD with 77% balanced accuracy, while in the case of the facial analysis, we observed 81% balanced accuracy. The fusion of both modalities increased the balanced accuracy to 83% (88% sensitivity and 78% specificity). The most informative speech exercise in the multimodality system turned out to be a tongue twister. Additionally, we identified muscle movements that are characteristic of hypomimia. CONCLUSIONS: The introduced methodology, which is based on the myriad of speech exercises likewise audio and video modality, allows for the detection of PD with an accuracy of up to 83%. The speech exercise - tongue twisters occurred to be the most valuable from the clinical point of view. Additionally, the clinical interpretation of the created models is illustrated. The presented computer-supported methodology could serve as an extra tool for neurologists in PD detection and the proposed potential solution of mHealth will facilitate the patient's and doctor's life.
- Klíčová slova
- Acoustic analysis, Facial analysis, Hypokinetic dysarthria, Hypomimia, Machine learning, Parkinson's disease,
- Publikační typ
- časopisecké články MeSH
Hypokinetic dysarthria (HD) and freezing of gait (FOG) are both axial symptoms that occur in patients with Parkinson's disease (PD). It is assumed they have some common pathophysiological mechanisms and therefore that speech disorders in PD can predict FOG deficits within the horizon of some years. The aim of this study is to employ a complex quantitative analysis of the phonation, articulation and prosody in PD patients in order to identify the relationship between HD and FOG, and establish a mathematical model that would predict FOG deficits using acoustic analysis at baseline. We enrolled 75 PD patients who were assessed by 6 clinical scales including the Freezing of Gait Questionnaire (FOG-Q). We subsequently extracted 19 acoustic measures quantifying speech disorders in the fields of phonation, articulation and prosody. To identify the relationship between HD and FOG, we performed a partial correlation analysis. Finally, based on the selected acoustic measures, we trained regression models to predict the change in FOG during a 2-year follow-up. We identified significant correlations between FOG-Q scores and the acoustic measures based on formant frequencies (quantifying the movement of the tongue and jaw) and speech rate. Using the regression models, we were able to predict a change in particular FOG-Q scores with an error of between 7.4 and 17.0 %. This study is suggesting that FOG in patients with PD is mainly linked to improper articulation, a disturbed speech rate and to intelligibility. We have also proved that the acoustic analysis of HD at the baseline can be used as a predictor of the FOG deficit during 2 years of follow-up. This knowledge enables researchers to introduce new cognitive systems that predict gait difficulties in PD patients.
- Klíčová slova
- Acoustic analysis, Freezing of gait, Hypokinetic dysarthria, Parkinson’s disease, Quantitative analysis,
- Publikační typ
- časopisecké články MeSH