Most cited article - PubMed ID 29048877
Stereoselective Synthesis of Benzo[e][1,4]oxazino[4,3-a][1,4]diazepine-6,12-diones with Two Diversity Positions
The preparation of novel 1,4-oxazepane-5-carboxylic acids bearing two stereocenters is reported in this article. Fmoc-HSe(TBDMS)-OH immobilized on Wang resin was reacted with different nitrobenzenesulfonyl chlorides and alkylated with 2-bromoacetophenones to yield N-phenacyl nitrobenzenesulfonamides. Their cleavage from the polymer support using trifluoroacetic acid (TFA) led to the removal of the silyl protective group followed by spontaneous lactonization. In contrast, TFA/triethylsilane (Et3SiH)-mediated cleavage yielded 1,4-oxazepane derivatives as a mixture of inseparable diastereomers. The regioselectivity/stereoselectivity depended on the substitution of the starting 2-bromoacetophenones and was studied in detail. Catalytic hydrogenation of the nitro group improved the separability of the resulting diastereomeric anilines, which allowed us to isolate and fully characterize the major isomers.
- Publication type
- Journal Article MeSH
The preparation of 5-methylene-thiohydantoins using solid-phase synthesis is reported in this paper. After sulfonylation of immobilized Ser (t-Bu)-OH with 4-nitrobenzenesulfonyl chloride followed by alkylation with various bromoketones, the 4-Nos group was removed and the resulting polymer-supported α-acylamino ketones reacted with Fmoc-isothiocyanate. Cleavage of the Fmoc protecting group was followed by the spontaneous cyclative cleavage releasing the 5-methylene-thiohydantoin derivatives from the polymer support. Reduction with triethylsilane (TES) yielded the corresponding 5-methyl-thiohydantoins. When Fmoc-isothiocyanate was replaced with alkyl isothiocyanates, the trifluoroacetic acid (TFA) mediated cleavage from the polymer support, which was followed by the cyclization reaction and the imidazo[2,1-b]thiazol-4-iums were obtained. Their conversion in deuterated dimethylsulfoxide led to imidazole-2-thiones.
- Keywords
- bromoketone, heterocycle, imidazole, serine, solid-phase synthesis, thiohydantoin,
- MeSH
- Ketones chemistry MeSH
- Polymers chemistry MeSH
- Stereoisomerism MeSH
- Solid-Phase Synthesis Techniques MeSH
- Thiohydantoins chemical synthesis chemistry MeSH
- Thiones chemical synthesis chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ketones MeSH
- Polymers MeSH
- Thiohydantoins MeSH
- Thiones MeSH